-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIndividual.java
82 lines (70 loc) · 1.69 KB
/
Individual.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import java.util.ArrayList;
import java.util.Arrays;
import java.util.concurrent.Callable;
public class Individual implements Callable<Individual> {
private NeuralNetwork network;
private Game game;
public Individual(int numInputs) {
network = new NeuralNetwork(numInputs);
network.addLayer(40, Activation.Sigmoid);
network.addLayer(3, Activation.Sigmoid);
}
/**
* @author Sri Kondapalli
* @param NeeralNetwork passed in as a requirement for pairs of individuals to reproduce
*/
public Individual(NeuralNetwork n) {
network = n;
}
public double getFitness() {
return network.getFitness();
}
public static double predictionThreshold = 0.9;
public void play() {
// System.out.println("PLAYING");
ArrayList<Double> newState = game.getState();
ArrayList<Double> actions = network.rawPredict(newState);
if (actions.get(0) == -1) {
return;
}
if (actions.get(0) >= predictionThreshold) {
game.moveRight();
}
if(actions.get(1) >= predictionThreshold) {
game.jump();
}
if(actions.get(2) >= predictionThreshold) {
game.moveLeft();
}
}
public boolean ifDone = false;
public void setDone(boolean f) {
//System.out.println("WHAT?"+GeneticAlgorithm.numDone);
ifDone = f;
}
public NeuralNetwork getNN() {
return network;
}
@Override
public String toString() {
return "Individual<fitness: "+ network.getFitness()+">";
}
@Override
public Individual call() {
try {
game = new Game();
game.indiv = this;
game.start();
while (!game.isDone) {
play();
}
network.setFitness(game.getFitness());
GeneticAlgorithm.numDone++;
return this;
}
catch (Exception e) {
e.printStackTrace();
}
return this;
}
}