-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDataset.py
329 lines (278 loc) · 14.5 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from typing import Any, List, Dict, Set, Tuple, Union, Optional, Iterator, Iterable
import random
from Helpers.Torches import *
from Helpers.SearchLog import SearchLog, PosInteraction
from Helpers.Graph import PpsGraph, Pps2DGraph, PpsHyperGraph, PpsLogHyperGraph
from Helpers.IOHelper import IOHelper
from Helpers.SearchLogCollection import SearchLogCollection
from Helpers.GlobalSettings import Gs, Gsv
class GraphDataset(Dataset):
users_onehot: LongTensor
items_onehot: LongTensor
vocabulary_onehot: LongTensor
queries_multihot: Tensor
queries_for_embeddingbag: LongTensor
queries_offset_for_embeddingbag: LongTensor
node_count: int
user_count: int
query_count: int
item_count: int
vocab_size: int
query_start_index_in_graph: int
item_start_index_in_graph: int
search_logs: SearchLogCollection
pos_interactions: List[PosInteraction]
neg_interactions: List[Tuple[int, int, int]]
neg_items_for_user_query_pair: Dict[Tuple[int, int], List[int]]
neg_sample_size: int
rand_neg_sample_size: int
nonrand_neg_sample_size: int
_graph2d: Pps2DGraph = None
_hgraph: PpsHyperGraph = None
_hloggraph: PpsLogHyperGraph = None
_u_his_q: List[List[int]] = None
_u_his_i: List[List[int]] = None
_u_his_q_tensor: LongTensor = None
_u_his_i_tensor: LongTensor = None
_u_his_q_maxlen: int = None
_u_his_i_maxlen: int = None
@property
def user_history_queries(self) -> List[List[int]]:
'''用户的搜索记录,按搜索时间排序。'''
if self._u_his_q is None: self._get_user_history()
return self._u_his_q
@property
def user_history_items(self) -> List[List[int]]:
'''用户所有交互过的物品,按交互时间排序。'''
if self._u_his_i is None: self._get_user_history()
return self._u_his_i
@property
def user_history_queries_tensor(self) -> LongTensor:
'''用户的搜索记录,按搜索时间排序。'''
if self._u_his_q_tensor is None: self._get_user_history_tensor()
return self._u_his_q_tensor
@property
def user_history_items_tensor(self) -> LongTensor:
'''用户的搜索记录,按搜索时间排序。'''
if self._u_his_i_tensor is None: self._get_user_history_tensor()
return self._u_his_i_tensor
@property
def user_history_query_maxlen(self) -> int:
if self._u_his_q_maxlen is None: self._get_user_history()
return self._u_his_q_maxlen
@property
def user_history_item_maxlen(self) -> int:
if self._u_his_i_maxlen is None: self._get_user_history()
return self._u_his_i_maxlen
@property
def graph(self) -> Union[Pps2DGraph, PpsHyperGraph, PpsLogHyperGraph]:
if self.graph_type == Pps2DGraph: return self.graph2d
elif self.graph_type == PpsHyperGraph: return self.hypergraph
elif self.graph_type == PpsLogHyperGraph: return self.hypergraph_log
@property
def graph2d(self) -> Pps2DGraph:
if self._graph2d is None:
self._graph2d = Pps2DGraph.from_interactions(
self.pos_interactions, self.node_count, self.user_count, self.query_count, False, GraphDataset.device
)
return self._graph2d
@property
def hypergraph(self) -> PpsHyperGraph:
if self._hgraph is None:
self._hgraph = PpsHyperGraph.from_interactions(
self.pos_interactions, self.node_count, self.user_count, self.query_count, GraphDataset.device
)
return self._hgraph
@property
def hypergraph_log(self) -> PpsLogHyperGraph:
if self._hloggraph is None:
self._hloggraph = PpsLogHyperGraph.from_search_logs(
self.search_logs, self.node_count, self.user_count, self.query_count, GraphDataset.device
)
return self._hloggraph
def __len__(self): return len(self.pos_interactions)
def __getitem__(self, index: int) -> Tuple[Tuple[int, int, int, int], List[int]]:
if self.nonrand_neg_sample_size == 0:
return self.pos_interactions[index].uqif(), random.sample(range(self.item_count), self.rand_neg_sample_size)
else:
positive_interaction = self.pos_interactions[index].uqif()
negative_items_for_uq = self.neg_items_for_user_query_pair[(positive_interaction[0], positive_interaction[1])]
if len(negative_items_for_uq) < self.nonrand_neg_sample_size:
random_sample_count = self.neg_sample_size - len(negative_items_for_uq)
negative_items = random.sample(range(self.item_count), random_sample_count) + negative_items_for_uq
else:
negative_items = random.sample(negative_items_for_uq, self.nonrand_neg_sample_size)
negative_items += random.sample(range(self.item_count), self.rand_neg_sample_size)
return positive_interaction, negative_items
def __init__(self,
fn_graph_info: str,
fn_queries_multihot: str,
fn_train_data: str,
graph_type: type,
random_negative_sample_size: int,
non_random_negative_sample_size: int,
device: torch.device):
'''从几个数据文件中读取数据,初始化一个数据集类。'''
super().__init__()
assert graph_type in [Pps2DGraph, PpsHyperGraph, PpsLogHyperGraph], f'不支持的图类型:{str(graph_type)}'
GraphDataset.device = device
self.graph_type = graph_type
self.rand_neg_sample_size = random_negative_sample_size
self.nonrand_neg_sample_size = non_random_negative_sample_size
self.neg_sample_size = random_negative_sample_size + non_random_negative_sample_size
# 读取 graph_info.txt
# 该文件中仅存储了四个值,如下所示
with open(fn_graph_info, 'r', encoding='utf-8') as f:
self.user_count, self.query_count, self.item_count, self.vocab_size = [int(part) for part in f.readline().strip().split()]
self.node_count = self.user_count + self.query_count + self.item_count
self.query_start_index_in_graph = self.user_count
self.item_start_index_in_graph = self.user_count + self.query_count
# 数据集中存储的并不是实体的 onehot 值,而是实体的索引
# 例如 0,1,2 3 4 表示第 0 个 user、第 1 个 query、第 2 3 4 个 item
# 在使用 embedding 层时,我们打算将 0 留作 padding_idx
# 所以约定:实体的 onehot 值 == 实体的索引值 + 1
self.users_onehot = th.tensor(range(1, 1 + self.user_count), device=device)
self.items_onehot = th.tensor(range(1, 1 + self.item_count), device=device)
self.vocabulary_onehot = th.tensor(range(1, 1 + self.vocab_size), device=device)
# 这段代码构造 queries
# 原来是使用稀疏矩阵表示所有的 queries
# 后来发现 EmbeddingBag 更简单易用,就改用了后者,但仍然保留 queries_multihot
indicesX, indicesY, elements = [], [], []
embed_bag_input = []
embed_bag_offsets = []
embed_bag_offset = 0
with open(fn_queries_multihot) as f_query:
# 行形式举例:3294 3948 21039 343
for row, line in enumerate(f_query):
word_indices = [int(part) for part in line.strip().split()]
word_onehots = [part + 1 for part in word_indices]
embed_bag_offsets.append(embed_bag_offset)
embed_bag_input.extend(word_onehots)
embed_bag_offset += len(word_onehots)
for word_index in word_indices:
indicesX.append(row)
indicesY.append(word_index)
elements.append(1 / len(word_indices))
self.queries_multihot = torch.sparse_coo_tensor(
[indicesX, indicesY],
elements,
(self.query_count, self.vocab_size),
dtype=torch.float, device=device
).coalesce()
self.queries_for_embeddingbag = th.tensor(embed_bag_input, device=device)
self.queries_offset_for_embeddingbag = th.tensor(embed_bag_offsets, device=device)
# 读取 search logs
self.search_logs = SearchLogCollection.read(fn_train_data)
# 根据 search logs 整理出所有的正负交互
self.pos_interactions = []
neg_interactions = []
neg_items_for_uq: Dict[Tuple[int, int], List[int]] = {}
positive_flag_count = 0
negative_flag_count = 0
user_history_lens = {u:0 for u in range(self.user_count)}
for log in self.search_logs:
# 暂时不用高于1的相关度
self.pos_interactions.extend(PosInteraction.from_search_log(log, treat_all_1=True))
neg_items = neg_items_for_uq.setdefault((log.user, log.query), [])
for item, flag in zip(log.items, log.interactions):
if flag > 0:
positive_flag_count += 1
user_history_lens[log.user] += 1
else:
negative_flag_count += 1
neg_interactions.append((log.user, log.query, item))
neg_items.append(item)
self.neg_interactions = neg_interactions
self.neg_items_for_user_query_pair = neg_items_for_uq
IOHelper.LogPrint(f'训练数据集构造完毕:{fn_train_data}')
IOHelper.LogPrint(f'UserCount QueryCount ItemCount Vocabulary SearchLogs PosInteractions GraphType')
IOHelper.LogPrint(f'{self.user_count:<9} {self.query_count:<10} {self.item_count:<9} {self.vocab_size:<10} ' +
f'{len(self.search_logs):<10} {len(self.pos_interactions):<15} {graph_type.__name__:<9}')
IOHelper.LogPrint(f'每个正样本平均有 {negative_flag_count / positive_flag_count:<.4f} 个负样本')
max_len = max(user_history_lens.values())
if Gs.Dataset.user_history_limit != -1 and max_len > Gs.Dataset.user_history_limit:
info = f',因过长而被限制到 {Gs.Dataset.user_history_limit}'
else:
info = ''
IOHelper.LogPrint(f'最大用户历史长度为 {max_len}{info}')
def _get_user_history(self) -> None:
qhis = [[] for _ in range(self.user_count)]
ihis = [[] for _ in range(self.user_count)]
for log in self.search_logs:
qhis[log.user].append((log.search_time, log.query))
ihis[log.user].extend(((t, i) for t, i, f in zip(log.times, log.items, log.interactions) if f > 0))
for i in range(self.user_count):
qhis[i] = [q for _, q in sorted(qhis[i])]
ihis[i] = [item for _, item in sorted(ihis[i])]
if Gs.Dataset.user_history_limit != -1:
if len(qhis[i]) > Gs.Dataset.user_history_limit:
qhis[i] = qhis[i][:Gs.Dataset.user_history_limit]
if len(ihis[i]) > Gs.Dataset.user_history_limit:
ihis[i] = ihis[i][:Gs.Dataset.user_history_limit]
self._u_his_q = qhis
self._u_his_i = ihis
self._u_his_q_maxlen = len(max(qhis, key=lambda l: len(l)))
self._u_his_i_maxlen = len(max(ihis, key=lambda l: len(l)))
def _get_user_history_tensor(self) -> None:
# 补足占位符
qhis, ihis = self.user_history_queries, self.user_history_items
user_queries_list, user_items_list = [], []
for u in range(self.user_count):
# 这里不能用 extend,否则就是修改数据集了
user_queries_list.append(qhis[u] + [-1] * (self.user_history_query_maxlen - len(qhis[u])))
user_items_list.append(ihis[u] + [-1] * (self.user_history_item_maxlen - len(ihis[u])))
# 构造张量
self._u_his_q_tensor = torch.tensor(user_queries_list, device=GraphDataset.device)
self._u_his_i_tensor = torch.tensor(user_items_list, device=GraphDataset.device)
@staticmethod
def collate_fn(data: List[Tuple[Tuple[int, int, int, int], List[int]]]
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
'''返回值:正交互和负交互的四要素(用户索引,查询索引,商品索引,交互值),共八项(规定)。'''
# Positive ones and negative ones
p_users, p_queries, p_items, p_flags = [], [], [], []
n_users, n_queries, n_items = [], [], []
for (u, q, p_item, p_flag), neg_sample_items in data:
l = len(neg_sample_items)
n_items.extend(neg_sample_items)
n_users.extend([u] * l)
n_queries.extend([q] * l)
p_users.append(u)
p_queries.append(q)
p_items.append(p_item)
p_flags.append(p_flag)
d = GraphDataset.device
p_users = th.tensor(p_users, device=d)
p_queries = th.tensor(p_queries, device=d)
p_items = th.tensor(p_items, device=d)
p_flags = th.tensor(p_flags, device=d)
n_users = th.tensor(n_users, device=d)
n_queries = th.tensor(n_queries, device=d)
n_items = th.tensor(n_items, device=d)
n_flags = th.zeros_like(n_users, device=d)
return p_users, p_queries, p_items, p_flags, n_users, n_queries, n_items, n_flags
class TestSearchLogDataLoader(object):
logs: List[Tuple[int, int, List[int], List[int], bool]]
def __init__(self, fn_search_log: str, dataset_train: GraphDataset, device: torch.device):
logs = []
line_count = 0
with open(fn_search_log, 'r', encoding='utf-8') as f:
f.readline()
for line in f:
line_count += 1
log = SearchLog.parse(line)
# 暂时不用高于 1 的相关度
tuple = log.get_interacted_items()
if sum(log.interactions) > 0:
logs.append((log.user, log.query, tuple[0], None, True))
self.logs = logs
self.users1 = torch.ones(dataset_train.item_count, dtype=torch.long, device=device)
self.queries1 = torch.ones(dataset_train.item_count, dtype=torch.long, device=device)
IOHelper.LogPrint(f'验证/测试数据集构造完毕:{fn_search_log}')
IOHelper.LogPrint(f'共 {line_count} 行,取出 {len(logs)} 条有效的 search_log')
def __len__(self): return len(self.logs)
def __iter__(self):
for log in self.logs:
u, q, items_interacted, flags_interacted, all_1 = log
users = u * self.users1
queries = q * self.queries1
yield users, queries, items_interacted, flags_interacted, all_1