-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtoken_transformer.py
68 lines (55 loc) · 2.38 KB
/
token_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) [2012]-[2021] Shanghai Yitu Technology Co., Ltd.
#
# This source code is licensed under the Clear BSD License
# LICENSE file in the root directory of this file
# All rights reserved.
"""
Take the standard Transformer as T2T Transformer
"""
import torch.nn as nn
from timm.models.layers import DropPath
from transformer_block import Mlp
import torch
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, in_dim = None, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., norm=nn.LayerNorm):
super().__init__()
self.num_heads = num_heads
self.in_dim = in_dim
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, in_dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(in_dim, in_dim)
self.proj_drop = nn.Dropout(proj_drop)
self.norm1 = norm(in_dim,eps=0.0001)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.in_dim // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.in_dim)
v = v.transpose(1,2).reshape(B, N, self.in_dim)
x = self.proj(x)
x = self.proj_drop(x)
x = v.squeeze(1) + x
return x
class Token_transformer(nn.Module):
def __init__(self, dim, in_dim, num_heads, mlp_ratio=1., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, in_dim=in_dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(in_dim)
self.mlp = Mlp(in_features=in_dim, hidden_features=int(in_dim*mlp_ratio), out_features=in_dim, act_layer=act_layer, drop=drop)
self.dim = dim
self.count = 0
def forward(self, x):
y = self.norm1(x)
x = self.attn(y)
x = self.norm2(x)
x = x + self.drop_path(self.mlp(x))
return x