-
Notifications
You must be signed in to change notification settings - Fork 0
/
common.py
263 lines (204 loc) · 10.1 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
from scipy.sparse import csr_matrix
from scipy.optimize import lsq_linear
import requests
from PIL import Image
import io
from contextlib import contextmanager
import sys
import time
import psutil
PatchWidth = 20 #pixels
PatchHeight = 20 #pixels
PatchOverlapX = 10 #pixels
PatchOverlapY = 10 #pixels
PatchStrideX = PatchWidth - PatchOverlapX
PatchStrideY = PatchHeight - PatchOverlapY
# Stopwatch takes a name, or a label_fn and a boolean enable. If enable is False, the context manager does nothing. Otherwise, it measures the time taken to execute the code block and prints the time taken.
# label_fn is a function that takes a dataclass with fields wall_time, cpu_time, avg_cpu_used, and cpu_count, and returns a string to output
class Stopwatch:
def __init__(self, name, print_stats=True):
self.name = name
self.stats_msg = None
self.print_stats = print_stats
def __enter__(self):
self.start_wall_time = time.time()
self.start_cpu_time = psutil.Process().cpu_times().user + psutil.Process().cpu_times().system
self.start_cpu_count = psutil.cpu_count()
return self
def set_stats_msg(self, stats_msg):
self.stats_msg = stats_msg
def start(self):
self.start_wall_time = time.time()
self.start_cpu_time = psutil.Process().cpu_times().user + psutil.Process().cpu_times().system
self.start_cpu_count = psutil.cpu_count()
def wall_elapsed(self):
return time.time() - self.start_wall_time
def cpu_elapsed(self):
end_cpu_time = psutil.Process().cpu_times().user + psutil.Process().cpu_times().system
return end_cpu_time - self.start_cpu_time
def __exit__(self, type, value, traceback):
msg = self.stats_msg = f'{self.name}: {self.wall_elapsed():.1f} seconds, {self.cpu_elapsed():.1f} seconds CPU'
if self.stats_msg is not None:
msg += f', {self.stats_msg}'
if self.print_stats:
sys.stdout.write('%s: %s\n' % (self.name, self.stats_msg))
sys.stdout.flush()
def solve_sparse_equations(equations, bounds=(-np.inf, np.inf), verbose=False):
rowidx = []
colidx = []
data = []
b = []
with Stopwatch("Solving sparse equations", print_stats=verbose) as st:
for i, eq in enumerate(equations):
for coef, var in eq[:-1]:
rowidx.append(i)
colidx.append(var)
data.append(coef)
b.append(eq[-1])
nvars = max(colidx) + 1
A = csr_matrix((data, (rowidx, colidx)), shape=(len(b), nvars))
b = np.array(b)
res = lsq_linear(A, b, bounds, verbose=(1 if verbose else 0))
st.set_stats_msg(f'nvars={nvars}, nequations={b.shape[0]}')
return res.x
def solve_sparse_equations_from(data, rowidx, colidx, b, bounds=(-np.inf, np.inf), verbose=False):
with Stopwatch("Solving sparse equations from data", print_stats=verbose) as st:
nvars = max(colidx) + 1
A = csr_matrix((data, (rowidx, colidx)), shape=(len(b), nvars))
b = np.array(b)
res = lsq_linear(A, b, bounds, verbose=(1 if verbose else 0))
st.set_stats_msg(f'nvars={nvars}, nequations={len(b)}')
return res.x
def solve_haze_detection_v1(i0, i1, verbose=True):
height, width = i0.shape[:2]
with Stopwatch(f"solve_haze_detection {width}x{height}, {width*height} pixels", print_stats = verbose):
# Number of variables: each pixel has 4 variables (o, r, g, b)
num_vars = height * width * 4
# Helper functions to get variable indices
def h(i, j, k):
return (i * width + j) * 4 + k
def o(i, j):
return h(i, j, 3)
equations = []
# Add the haze model equations
for i in range(height):
for j in range(width):
for k in range(3): # RGB
# h[i,j,[0:3]] + i0[i,j,[0:3]] * h[i,j,3] = i1[i,j]
equations.append([(1, h(i, j, k)), (i0[i, j, k], o(i, j)), i1[i, j, k]])
# Add the smoothness constraints for opacity and haze color
for i in range(height):
for j in range(width - 1): # horizontal smoothness
equations.append([(1, o(i, j)), (-1, o(i, j + 1)), 0])
for k in range(3):
equations.append([(1, h(i, j, k)), (-1, h(i, j + 1, k)), 0])
for i in range(height - 1): # vertical smoothness
for j in range(width):
equations.append([(1, o(i, j)), (-1, o(i + 1, j)), 0])
for k in range(3):
equations.append([(1, h(i, j, k)), (-1, h(i + 1, j, k)), 0])
x_opt = solve_sparse_equations(equations, (0,1))
# Extract the optimized opacity and haze color
haze_image = np.zeros((height, width, 4))
for i in range(height):
for j in range(width):
haze_image[i, j, 3] = 1 - x_opt[o(i, j)] # opacity
for k in range(3):
haze_image[i, j, k] = x_opt[h(i, j, k)] # r, g, b
return haze_image
# solve_haze_removal_v1 becomes much slower as i0 and i1 become larger. Early testing suggests a 5000x slowdown once i0 and i1 become larger than around 600 pixels
# Let's try to optimize the function by breaking the image into overlapping patches, solving each patch separately, and then combining the patches into the final image
# Patches overlap so that we can interpolate the haze values across the overlap region
def solve_haze_detection_v2(i0, i1):
height, width = i0.shape[:2]
with Stopwatch(f"solve_haze_detection_v2 {width}x{height}, {width*height} pixels") as st:
patch_width = 20 # pixels
patch_height = 20 # pixels
patch_overlap_x = 10 # pixels
patch_overlap_y = 10 # pixels
haze_image = np.zeros((height, width, 4))
weight_sum = np.zeros((height, width, 1))
# Calculate minimum number of patches required to completely cover the image, with overlap greater than or equal to patch_overlap_x, patch_overlap_y
patch_stride_x = patch_width - patch_overlap_x
patch_stride_y = patch_height - patch_overlap_y
max_x_inclusive = width - patch_width + 1
max_y_inclusive = height - patch_height + 1
num_patches_x = max(1, int(np.ceil(max_x_inclusive / patch_stride_x)))
num_patches_y = max(1, int(np.ceil(max_y_inclusive / patch_stride_y)))
# Create a weight matrix for the patch (higher weight in the center, lower at the edges)
assert patch_width == patch_height
patch_weight = gaussian_kernel_2d(patch_width, sigma = patch_width / 6.0)
for y in np.linspace(0, height - patch_height, num_patches_y, dtype=int):
for x in np.linspace(0, width - patch_width, num_patches_x, dtype=int):
# Define patch boundaries
y_end = y + patch_height
x_end = x + patch_width
# Extract patches
patch_i0 = i0[y:y_end, x:x_end]
patch_i1 = i1[y:y_end, x:x_end]
# Solve haze removal for the patch
patch_haze = solve_haze_detection_v1(patch_i0, patch_i1, verbose=False)
# Add the weighted patch to the final image
haze_image[y:y_end, x:x_end] += patch_haze * patch_weight[:, :, np.newaxis]
weight_sum[y:y_end, x:x_end] += patch_weight[:, :, np.newaxis]
# Normalize the final image by the total weights
haze_image /= weight_sum
return haze_image
def gaussian_kernel_2d(kernel_size, sigma):
from scipy.signal.windows import gaussian
"""Returns a 2D Gaussian kernel array."""
gkern1d = gaussian(kernel_size, std=sigma).reshape(kernel_size, 1)
gkern2d = np.outer(gkern1d, gkern1d)
return gkern2d
PatchWeight2D = gaussian_kernel_2d(PatchWidth, sigma=PatchWidth / 6.0)
def gaussian_kernel_3d(kernel_size, sigma):
from scipy.signal.windows import gaussian
"""Returns a 3D Gaussian kernel array."""
gkern1d = gaussian(kernel_size, std=sigma).reshape(kernel_size, 1)
return np.einsum("ai,aj,ak->ijk", gkern1d, gkern1d, gkern1d)
PatchWeight3D = gaussian_kernel_3d(PatchWidth, sigma=PatchWidth / 6.0)
# def create_patch_weight(shape):
# """Create a weight matrix for a patch, with higher weights in the center."""
# y, x = np.ogrid[:shape[0], :shape[1]]
# # np.ogrid creates a grid from 0 to shape[0]-1 and 0 to shape[1]-1 (inclusive)
# # so we need to subtract 0.5 to get the true center
# center_y, center_x = (shape[0] - 1) / 2, (shape[1] - 1) / 2
# np.fabs(x - center_x) / center_x, np.fabs(y - center_y), center_y
# normalized_distance = np.sqrt(((x - center_x) / center_x) ** 2 +
# ((y - center_y) / center_y) ** 2)
# weight = 1 - np.minimum(1, )
# # Usually there's enough overlap that
# return weight
def read_image_from_url(url, subsample=1) -> np.array:
response = requests.get(url)
im0 = Image.open(io.BytesIO(response.content))
im0 = im0.resize((im0.width // subsample, im0.height // subsample))
im0 = np.array(im0) / 255.0
# Remove top 40 pixels (title and timestamp)
im0 = im0[40//subsample:]
return im0
# Create test function
def regression_test_1():
xvar = 0
yvar = 1
equations = [
[(1, xvar), (1, yvar), 5], # x+y=5
[(1, xvar), (-1, yvar), 1] # x-y=1
]
expected = [3, 2]
x = solve_sparse_equations(equations)
assert np.allclose(x, expected)
def regression_test_2():
# Synthesize test images
i0 = np.array([[[1, 0, 0], [0, 1, 0]]]) # Red, Green pixels
i1 = np.array([[[1, 0.4, 0.4], [0.4, 1, 0.4]]]) # Red, Green pixels with haze
# Solve for the haze image
haze_image = solve_haze_detection_v1(i0, i1)
# Expected haze RGBA values
expected_haze = np.array([0.4, 0.4, 0.4, 0.4])
np.testing.assert_array_almost_equal(haze_image[0, 0], expected_haze, decimal=2)
np.testing.assert_array_almost_equal(haze_image[0, 1], expected_haze, decimal=2)
def regression_test():
regression_test_1()
regression_test_2()