-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
354 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
use criterion::{black_box, criterion_group, AxisScale, BenchmarkId, Criterion, PlotConfiguration}; | ||
use portgraph::{algorithms::ConvexChecker, PortView}; | ||
|
||
use super::generators::make_two_track_dag; | ||
|
||
fn bench_convex_construction(c: &mut Criterion) { | ||
let mut g = c.benchmark_group("initialize convex checker object"); | ||
g.plot_config(PlotConfiguration::default().summary_scale(AxisScale::Logarithmic)); | ||
|
||
for size in [100, 1_000, 10_000] { | ||
g.bench_with_input( | ||
BenchmarkId::new("initalize_convexity", size), | ||
&size, | ||
|b, size| { | ||
let graph = make_two_track_dag(*size); | ||
b.iter(|| black_box(ConvexChecker::new(&graph))) | ||
}, | ||
); | ||
} | ||
g.finish(); | ||
} | ||
|
||
/// We benchmark the worst case scenario, where the "subgraph" is the | ||
/// entire graph itself. | ||
fn bench_convex(c: &mut Criterion) { | ||
let mut g = c.benchmark_group("Runtime convexity check"); | ||
g.plot_config(PlotConfiguration::default().summary_scale(AxisScale::Logarithmic)); | ||
|
||
for size in [100, 1_000, 10_000] { | ||
let graph = make_two_track_dag(size); | ||
let mut checker = ConvexChecker::new(&graph); | ||
g.bench_with_input( | ||
BenchmarkId::new("check_convexity", size), | ||
&size, | ||
|b, _size| b.iter(|| black_box(checker.is_node_convex(graph.nodes_iter()))), | ||
); | ||
} | ||
g.finish(); | ||
} | ||
|
||
criterion_group! { | ||
name = benches; | ||
config = Criterion::default(); | ||
targets = | ||
bench_convex, | ||
bench_convex_construction | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,6 @@ | ||
pub mod generators; | ||
|
||
pub mod convex; | ||
pub mod hierarchy; | ||
pub mod portgraph; | ||
pub mod toposort; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,9 +1,11 @@ | ||
//! Algorithm implementations for portgraphs. | ||
mod convex; | ||
mod dominators; | ||
mod post_order; | ||
mod toposort; | ||
|
||
pub use convex::ConvexChecker; | ||
pub use dominators::{dominators, dominators_filtered, DominatorTree}; | ||
pub use post_order::{postorder, postorder_filtered, PostOrder}; | ||
pub use toposort::{toposort, toposort_filtered, TopoSort}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,288 @@ | ||
//! Convexity checking for portgraphs. | ||
//! | ||
//! This is based on a [`ConvexChecker`] object that is expensive to create | ||
//! (linear in the size of the graph), but can be reused to check multiple | ||
//! subgraphs for convexity quickly. | ||
use std::collections::BTreeSet; | ||
|
||
use bitvec::bitvec; | ||
use bitvec::vec::BitVec; | ||
|
||
use crate::algorithms::toposort; | ||
use crate::{Direction, LinkView, NodeIndex, PortIndex, SecondaryMap, UnmanagedDenseMap}; | ||
|
||
use super::TopoSort; | ||
|
||
/// A pre-computed datastructure for fast convexity checking. | ||
pub struct ConvexChecker<G> { | ||
graph: G, | ||
// The nodes in topological order | ||
topsort_nodes: Vec<NodeIndex>, | ||
// The index of a node in the topological order (the inverse of topsort_nodes) | ||
topsort_ind: UnmanagedDenseMap<NodeIndex, usize>, | ||
// A temporary datastructure used during `is_convex` | ||
causal: CausalVec, | ||
} | ||
|
||
impl<G> ConvexChecker<G> | ||
where | ||
G: LinkView + Copy, | ||
{ | ||
/// Create a new ConvexChecker. | ||
pub fn new(graph: G) -> Self { | ||
let inputs = graph | ||
.nodes_iter() | ||
.filter(|&n| graph.input_neighbours(n).count() == 0); | ||
let topsort: TopoSort<_> = toposort(graph, inputs, Direction::Outgoing); | ||
let topsort_nodes: Vec<_> = topsort.collect(); | ||
let mut topsort_ind = UnmanagedDenseMap::with_capacity(graph.node_count()); | ||
for (i, &n) in topsort_nodes.iter().enumerate() { | ||
topsort_ind.set(n, i); | ||
} | ||
let causal = CausalVec::new(topsort_nodes.len()); | ||
Self { | ||
graph, | ||
topsort_nodes, | ||
topsort_ind, | ||
causal, | ||
} | ||
} | ||
|
||
/// The graph on which convexity queries can be made. | ||
pub fn graph(&self) -> G { | ||
self.graph | ||
} | ||
|
||
/// Whether the subgraph induced by the node set is convex. | ||
/// | ||
/// An induced subgraph is convex if there is no node that is both in the | ||
/// past and in the future of another node of the subgraph. | ||
/// | ||
/// This function requires mutable access to `self` because it uses a | ||
/// temporary datastructure within the object. | ||
/// | ||
/// ## Arguments | ||
/// | ||
/// - `nodes`: The nodes inducing a subgraph of `self.graph()`. | ||
/// | ||
/// ## Algorithm | ||
/// | ||
/// Each node in the "vicinity" of the subgraph will be assigned a causal | ||
/// property, either of being in the past or in the future of the subgraph. | ||
/// It can then be checked whether there is a node in the past that is also | ||
/// in the future, violating convexity. | ||
/// | ||
/// Currently, the "vicinity" of a subgraph is defined as the set of nodes | ||
/// that are in the interval between the first and last node of the subgraph | ||
/// in some topological order. In the worst case this will traverse every | ||
/// node in the graph and can be improved on in the future. | ||
pub fn is_node_convex(&mut self, nodes: impl IntoIterator<Item = NodeIndex>) -> bool { | ||
let nodes: BTreeSet<_> = nodes.into_iter().map(|n| self.topsort_ind[n]).collect(); | ||
let min_ind = *nodes.first().unwrap(); | ||
let max_ind = *nodes.last().unwrap(); | ||
for ind in min_ind..=max_ind { | ||
let n = self.topsort_nodes[ind]; | ||
let mut in_inds = { | ||
let in_neighs = self.graph.input_neighbours(n); | ||
in_neighs | ||
.map(|n| self.topsort_ind[n]) | ||
.filter(|&ind| ind >= min_ind) | ||
}; | ||
if nodes.contains(&ind) { | ||
if in_inds.any(|ind| self.causal.get(ind) == Causal::Future) { | ||
// There is a node in the past that is also in the future! | ||
return false; | ||
} | ||
self.causal.set(ind, Causal::Past); | ||
} else { | ||
let ind_causal = match in_inds | ||
.any(|ind| nodes.contains(&ind) || self.causal.get(ind) == Causal::Future) | ||
{ | ||
true => Causal::Future, | ||
false => Causal::Past, | ||
}; | ||
self.causal.set(ind, ind_causal); | ||
} | ||
} | ||
true | ||
} | ||
|
||
/// Whether a subgraph is convex. | ||
/// | ||
/// A subgraph is convex if there is no path between two nodes of the | ||
/// sugraph that has an edge outside of the subgraph. | ||
/// | ||
/// Equivalently, we check the following two conditions: | ||
/// - There is no node that is both in the past and in the future of | ||
/// another node of the subgraph (convexity on induced subgraph), | ||
/// - There is no edge from an output port to an input port. | ||
/// | ||
/// This function requires mutable access to `self` because it uses a | ||
/// temporary datastructure within the object. | ||
/// | ||
/// ## Arguments | ||
/// | ||
/// - `nodes`: The nodes of the subgraph of `self.graph`, | ||
/// - `inputs`: The input ports of the subgraph of `self.graph`. These must | ||
/// be [`Direction::Incoming`] ports of a node in `nodes`, | ||
/// - `outputs`: The output ports of the subgraph of `self.graph`. These | ||
/// must be [`Direction::Outgoing`] ports of a node in `nodes`. | ||
/// | ||
/// Any edge between two nodes of the subgraph that does not have an explicit | ||
/// input or output port is considered within the subgraph. | ||
pub fn is_convex( | ||
&mut self, | ||
nodes: impl IntoIterator<Item = NodeIndex>, | ||
inputs: impl IntoIterator<Item = PortIndex>, | ||
outputs: impl IntoIterator<Item = PortIndex>, | ||
) -> bool { | ||
let pre_outputs: BTreeSet<_> = outputs | ||
.into_iter() | ||
.filter_map(|p| Some(self.graph.port_link(p)?.into())) | ||
.collect(); | ||
if inputs.into_iter().any(|p| pre_outputs.contains(&p)) { | ||
return false; | ||
} | ||
self.is_node_convex(nodes) | ||
} | ||
} | ||
|
||
/// Whether a node is in the past or in the future of a subgraph. | ||
#[derive(Default, Clone, Debug, PartialEq, Eq)] | ||
enum Causal { | ||
#[default] | ||
Past, | ||
Future, | ||
} | ||
|
||
/// A memory-efficient substitute for `Vec<Causal>`. | ||
struct CausalVec(BitVec); | ||
|
||
impl From<bool> for Causal { | ||
fn from(b: bool) -> Self { | ||
match b { | ||
true => Self::Future, | ||
false => Self::Past, | ||
} | ||
} | ||
} | ||
|
||
impl From<Causal> for bool { | ||
fn from(c: Causal) -> Self { | ||
match c { | ||
Causal::Past => false, | ||
Causal::Future => true, | ||
} | ||
} | ||
} | ||
|
||
impl CausalVec { | ||
fn new(len: usize) -> Self { | ||
Self(bitvec![0; len]) | ||
} | ||
|
||
fn set(&mut self, index: usize, causal: Causal) { | ||
self.0.set(index, causal.into()); | ||
} | ||
|
||
fn get(&self, index: usize) -> Causal { | ||
self.0[index].into() | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use crate::{LinkMut, NodeIndex, PortGraph, PortMut, PortView}; | ||
|
||
use super::ConvexChecker; | ||
|
||
fn graph() -> (PortGraph, [NodeIndex; 7]) { | ||
let mut g = PortGraph::new(); | ||
let i1 = g.add_node(0, 2); | ||
let i2 = g.add_node(0, 1); | ||
let i3 = g.add_node(0, 1); | ||
|
||
let n1 = g.add_node(2, 2); | ||
g.link_nodes(i1, 0, n1, 0).unwrap(); | ||
g.link_nodes(i2, 0, n1, 1).unwrap(); | ||
|
||
let n2 = g.add_node(2, 2); | ||
g.link_nodes(i1, 1, n2, 0).unwrap(); | ||
g.link_nodes(i3, 0, n2, 1).unwrap(); | ||
|
||
let o1 = g.add_node(2, 0); | ||
g.link_nodes(n1, 0, o1, 0).unwrap(); | ||
g.link_nodes(n2, 0, o1, 1).unwrap(); | ||
|
||
let o2 = g.add_node(2, 0); | ||
g.link_nodes(n1, 1, o2, 0).unwrap(); | ||
g.link_nodes(n2, 1, o2, 1).unwrap(); | ||
|
||
(g, [i1, i2, i3, n1, n2, o1, o2]) | ||
} | ||
|
||
#[test] | ||
fn induced_convexity_test() { | ||
let (g, [i1, i2, i3, n1, n2, o1, o2]) = graph(); | ||
let mut checker = ConvexChecker::new(&g); | ||
|
||
assert!(checker.is_node_convex([i1, i2, i3])); | ||
assert!(checker.is_node_convex([i1, n2])); | ||
assert!(!checker.is_node_convex([i1, n2, o2])); | ||
assert!(!checker.is_node_convex([i1, n2, o1])); | ||
assert!(checker.is_node_convex([i1, n2, o1, n1])); | ||
assert!(checker.is_node_convex([i1, n2, o2, n1])); | ||
assert!(checker.is_node_convex([i1, i3, n2])); | ||
assert!(!checker.is_node_convex([i1, i3, o2])); | ||
} | ||
|
||
#[test] | ||
fn edge_convexity_test() { | ||
let (g, [i1, i2, _, n1, n2, _, o2]) = graph(); | ||
let mut checker = ConvexChecker::new(&g); | ||
|
||
assert!(checker.is_convex( | ||
[i1, n2], | ||
[g.input(n2, 1).unwrap()], | ||
[ | ||
g.output(i1, 0).unwrap(), | ||
g.output(n2, 0).unwrap(), | ||
g.output(n2, 1).unwrap() | ||
] | ||
)); | ||
|
||
assert!(checker.is_convex( | ||
[i2, n1, o2], | ||
[g.input(n1, 0).unwrap(), g.input(o2, 1).unwrap()], | ||
[g.output(n1, 0).unwrap(),] | ||
)); | ||
|
||
assert!(!checker.is_convex( | ||
[i2, n1, o2], | ||
[ | ||
g.input(n1, 0).unwrap(), | ||
g.input(o2, 1).unwrap(), | ||
g.input(o2, 0).unwrap() | ||
], | ||
[g.output(n1, 0).unwrap(), g.output(n1, 1).unwrap()] | ||
)); | ||
} | ||
|
||
#[test] | ||
fn dangling_input() { | ||
let mut g = PortGraph::new(); | ||
let n = g.add_node(1, 1); | ||
let mut checker = ConvexChecker::new(&g); | ||
assert!(checker.is_node_convex([n])); | ||
} | ||
|
||
#[test] | ||
fn disconnected_graph() { | ||
let mut g = PortGraph::new(); | ||
let n = g.add_node(1, 1); | ||
g.add_node(1, 1); | ||
let mut checker = ConvexChecker::new(&g); | ||
assert!(checker.is_node_convex([n])); | ||
} | ||
} |