-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnnotate.py
132 lines (101 loc) · 3.54 KB
/
Annotate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from PIL import Image
from matplotlib import pyplot as plt
import os
import numpy as np
import scipy.signal as signal
import random
import imageProcessing as ip
import csv
"""
This is a simple script that allows a user to provide data by clicking on ant images.
The first click indicates where the "point at which the pronotum meets the cervical shield"
and the second indicates the "posterior basal angle of the metapleuron". The data (image name,
first point coordinates, second point) is then appended to a CSV file containing the data.
"""
"""
Keep only unique elements from a list
"""
def get_unique_elements(list):
unique_list = []
seen = set()
for item in list:
if item not in seen:
unique_list.append(item)
seen.add(item)
return unique_list
"""
Display image and allow user to annotate coordinates.
"""
def user_annotate(image):
# Display the image using Matplotlib
fig = plt.figure(
figsize=(16, 9)
) # Adjust to your screen's aspect ratio or resolution
manager = plt.get_current_fig_manager()
manager.full_screen_toggle() # Switch to full-screen mode
plt.imshow(image, cmap="gray")
plt.title("Click to annotate points")
plt.axis("on")
# Use ginput to select points manually
points = plt.ginput(n=2, timeout=-1)
# Automatically close the window after getting the points
plt.close()
# Convert points to integer coordinates
points = np.array(points, dtype=int)
plt.show()
x1, y1, x2, y2 = points[0, 0], points[0, 1], points[1, 0], points[1, 1]
return x1, y1, x2, y2
"""
Write collected data to the CSV file
"""
def write_to_csv(data, output_file):
# Check if the file already exists
file_exists = os.path.isfile(output_file)
# Write header and rows to CSV
with open(output_file, mode="a", newline="") as file:
writer = csv.writer(file)
# Write header
if not file_exists:
writer.writerow(["Image Name", "x1", "y1", "x2", "y2"])
# Write data rows
for row in data:
# Convert numpy arrays in the row to lists
processed_row = [
row[0], # Keep the string as is
row[1],
row[2],
row[3],
row[4],
]
writer.writerow(processed_row)
if __name__ == "__main__":
rel_path_source = input(
"Type the relative path of the folder containing the images you want to anotate: \n"
)
rel_path_dest = input(
"Type the relative path of the destination file for the collected data: \n"
)
originals, image_names = ip.load_images_from_folder(rel_path_source, max_images=400)
"""
Could be a problem in the training data if image names aren't unique.
"""
if len(image_names) != len(get_unique_elements(image_names)):
raise ValueError(f"Some pictures in {rel_path_source} share the same name !")
collected_data = []
for i in range(len(originals)):
# Regularly save the progress
if (i + 1) % 5 == 0:
write_to_csv(collected_data, rel_path_dest)
collected_data = []
if (i + 1) % 50 == 0:
if (
input(
"Do you wish to continue ? Input 'y' to continue, 'n' to stop."
)
== "n"
):
break
image = originals[i]
name = image_names[i]
x1, y1, x2, y2 = user_annotate(image)
collected_data.append([name, x1, y1, x2, y2])