-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathown_unet.py
418 lines (389 loc) · 22.6 KB
/
own_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import numpy as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.initializers import HeNormal
from tensorflow.keras.layers import Concatenate, Add, Activation, Input
from tensorflow.keras.layers import Conv2D, Dropout, Conv2DTranspose, BatchNormalization, MaxPooling2D, \
UpSampling2D, AvgPool2D
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras import Model, Sequential
from tensorflow.keras.metrics import Recall, Precision, CategoricalAccuracy
from typing import Dict, Optional, Any
from cvnn.losses import ComplexAverageCrossEntropy, ComplexWeightedAverageCrossEntropy
from cvnn.metrics import ComplexCategoricalAccuracy, ComplexAverageAccuracy, ComplexPrecision, ComplexRecall
from cvnn.layers import complex_input, ComplexConv2D, ComplexDropout, \
ComplexMaxPooling2DWithArgmax, ComplexUnPooling2D, ComplexInput, ComplexBatchNormalization, ComplexDense, \
ComplexUpSampling2D, ComplexConv2DTranspose, ComplexAvgPooling2D, ComplexPolarAvgPooling2D, ComplexMaxPooling2D
from cvnn.activations import cart_softmax, cart_relu
from cvnn.initializers import ComplexHeNormal
b
DROPOUT_DEFAULT = {
"downsampling": None,
"bottle_neck": None,
"upsampling": None
}
hyper_params = {
'padding': 'same',
'consecutive_conv_layers': 0,
'kernel_shape': (3, 3),
'block6_kernel_shape': (1, 1),
'max_pool_kernel': (2, 2),
'concat': Add,
'upsampling_layer': ComplexUnPooling2D,
'stride': 2,
'pooling': ComplexMaxPooling2DWithArgmax,
'activation': cart_relu,
'kernels': [12, 24, 48, 96, 192],
'output_function': cart_softmax,
'init': ComplexHeNormal,
'optimizer': Adam,
'learning_rate': 0.0001,
'depth': 5
}
complex_cast_to_tf = {
'upsampling_layer': {
ComplexUpSampling2D: UpSampling2D,
ComplexUnPooling2D: ComplexUnPooling2D,
ComplexConv2DTranspose: Conv2DTranspose
},
'pooling': {
ComplexMaxPooling2DWithArgmax: ComplexMaxPooling2DWithArgmax,
ComplexAvgPooling2D: AvgPool2D,
ComplexMaxPooling2D: MaxPooling2D
},
'init': {ComplexHeNormal: HeNormal} # TODO: Not activation cast done yet.
}
def _get_downsampling_block(input_to_block, num: int, dtype=np.complex64, dropout: Optional[bool] = False):
conv = ComplexConv2D(hyper_params['kernels'][:hyper_params['depth']][num], hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'](), dtype=dtype)(input_to_block)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = ComplexConv2D(hyper_params['kernels'][:hyper_params['depth']][num], hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'](), dtype=dtype)(conv)
conv = ComplexBatchNormalization(dtype=dtype)(conv)
conv = Activation(hyper_params['activation'])(conv)
if hyper_params['pooling'] == ComplexMaxPooling2DWithArgmax:
pool, pool_argmax = ComplexMaxPooling2DWithArgmax(hyper_params['max_pool_kernel'],
strides=hyper_params['stride'])(conv)
elif hyper_params['pooling'] == ComplexAvgPooling2D:
pool = ComplexAvgPooling2D(hyper_params['max_pool_kernel'], strides=hyper_params['stride'])(conv)
pool_argmax = None
elif hyper_params['pooling'] == ComplexPolarAvgPooling2D:
pool = ComplexPolarAvgPooling2D(hyper_params['max_pool_kernel'], strides=hyper_params['stride'])(conv)
pool_argmax = None
else:
raise ValueError(f"Unknown pooling {hyper_params['pooling']}")
if dropout:
pool = ComplexDropout(rate=dropout, dtype=dtype)(pool)
return pool, pool_argmax
def _tf_get_downsampling_block(input_to_block, num: int, dropout: Optional[bool] = False):
conv = Conv2D(hyper_params['kernels'][:hyper_params['depth']][num], hyper_params['kernel_shape'], activation=None,
padding=hyper_params['padding'],
kernel_initializer=complex_cast_to_tf['init'][hyper_params['init']]())(input_to_block)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = Conv2D(hyper_params['kernels'][:hyper_params['depth']][num], hyper_params['kernel_shape'], activation=None,
padding=hyper_params['padding'],
kernel_initializer=complex_cast_to_tf['init'][hyper_params['init']]())(conv)
conv = BatchNormalization()(conv)
conv = Activation(hyper_params['activation'])(conv)
if complex_cast_to_tf['pooling'][hyper_params['pooling']] == ComplexMaxPooling2DWithArgmax:
pool, pool_argmax = ComplexMaxPooling2DWithArgmax(hyper_params['max_pool_kernel'],
strides=hyper_params['stride'])(conv)
elif complex_cast_to_tf['pooling'][hyper_params['pooling']] == AvgPool2D:
pool = AvgPool2D(hyper_params['max_pool_kernel'], strides=hyper_params['stride'])(conv)
pool_argmax = None
elif complex_cast_to_tf['pooling'][hyper_params['pooling']] == MaxPooling2D:
pool = MaxPooling2D(hyper_params['max_pool_kernel'], strides=hyper_params['stride'])(conv)
pool_argmax = None
else:
raise ValueError(f"Unknown pooling {hyper_params['pooling']}")
if dropout:
pool = Dropout(rate=dropout)(pool)
return pool, pool_argmax
def _get_upsampling_block(input_to_block, pool_argmax, kernels, num: int, activation,
dropout: Optional[bool] = False, dtype=np.complex64):
if hyper_params['upsampling_layer'] == ComplexUnPooling2D:
unpool = ComplexUnPooling2D(upsampling_factor=2)([input_to_block, pool_argmax])
elif hyper_params['upsampling_layer'] == ComplexUpSampling2D:
unpool = ComplexUpSampling2D(size=2)(input_to_block)
elif hyper_params['upsampling_layer'] == ComplexConv2DTranspose:
unpool = ComplexConv2DTranspose(filters=num, kernel_size=3, strides=(2, 2), padding='same',
dilation_rate=(1, 1))(input_to_block)
else:
raise ValueError(f"Upsampling method {hyper_params['upsampling_layer'].name} not supported")
conv = ComplexConv2D(kernels, hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'](), dtype=dtype)(unpool)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = ComplexConv2D(kernels, hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'](), dtype=dtype)(conv)
conv = ComplexBatchNormalization(dtype=dtype)(conv)
conv = Activation(activation)(conv)
if dropout:
conv = ComplexDropout(rate=dropout, dtype=dtype)(conv)
return conv
def _get_tf_upsampling_block(input_to_block, pool_argmax, kernels, num: int,
activation, dropout: Optional[bool] = False):
if UpSampling2D == complex_cast_to_tf['upsampling_layer'][hyper_params['upsampling_layer']]:
unpool = UpSampling2D(size=2)(input_to_block)
elif Conv2DTranspose == complex_cast_to_tf['upsampling_layer'][hyper_params['upsampling_layer']]:
unpool = Conv2DTranspose(filters=num, kernel_size=3, strides=(2, 2), padding='same',
dilation_rate=(1, 1))(input_to_block)
elif complex_cast_to_tf['upsampling_layer'][hyper_params['upsampling_layer']] == ComplexUnPooling2D:
unpool = ComplexUnPooling2D(upsampling_factor=2)([input_to_block, pool_argmax])
else:
raise ValueError(f"Upsampling method"
f" {complex_cast_to_tf['upsampling_layer'][hyper_params['upsampling_layer']].name} "
f"not supported")
conv = Conv2D(kernels, hyper_params['kernel_shape'], activation=None, padding=hyper_params['padding'],
kernel_initializer=complex_cast_to_tf['init'][hyper_params['init']]())(unpool)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = Conv2D(kernels, hyper_params['kernel_shape'], activation=None, padding=hyper_params['padding'],
kernel_initializer=complex_cast_to_tf['init'][hyper_params['init']]())(conv)
conv = BatchNormalization()(conv)
conv = Activation(activation)(conv)
if dropout:
conv = Dropout(rate=dropout)(conv)
return conv
def _get_my_model(in1, get_downsampling_block, get_upsampling_block, dtype=np.complex64, name="my_own_model",
dropout_dict=None, num_classes=4, weights=None):
# Downsampling
if dropout_dict is None:
dropout_dict = DROPOUT_DEFAULT
pool = in1
pools = []
argmax_pools = []
for index in range(len(hyper_params['kernels'][:hyper_params['depth']])):
pool, pool_argmax = get_downsampling_block(pool, index, dtype=dtype, dropout=dropout_dict["downsampling"])
pools.append(pool)
argmax_pools.append(pool_argmax)
# Bottleneck
index = -1
conv = ComplexConv2D(hyper_params['kernels'][:hyper_params['depth']][index], (1, 1),
activation=hyper_params['activation'], padding=hyper_params['padding'],
dtype=dtype)(pools.pop())
if dropout_dict["bottle_neck"] is not None:
conv = ComplexDropout(rate=dropout_dict["bottle_neck"], dtype=dtype)(conv)
# Upsampling
while pools:
index -= 1
pool = pools.pop()
pool_argmax = argmax_pools.pop()
conv = get_upsampling_block(conv, pool_argmax, hyper_params['kernels'][:hyper_params['depth']][index], num=4,
activation=hyper_params['activation'],
dropout=dropout_dict["upsampling"], dtype=dtype)
if hyper_params['concat'] == Concatenate:
conv = Concatenate()([conv, pool])
elif hyper_params['concat'] == Add:
conv = Add()([conv, pool])
else:
raise KeyError(f"Concatenation {hyper_params['concat']} not known")
out = get_upsampling_block(conv, argmax_pools.pop(), activation=hyper_params['output_function'], dropout=False,
num=0, kernels=num_classes, dtype=dtype)
if weights is not None:
loss = ComplexWeightedAverageCrossEntropy(weights=weights)
else:
loss = ComplexAverageCrossEntropy()
model = Model(inputs=[in1], outputs=[out], name=name)
model.compile(optimizer=hyper_params['optimizer'](learning_rate=hyper_params['learning_rate']), loss=loss,
metrics=[ComplexCategoricalAccuracy(name='accuracy'),
ComplexAverageAccuracy(name='average_accuracy'),
ComplexPrecision(name='precision'),
ComplexRecall(name='recall')
])
return model
def _get_my_model_with_tf(in1, get_downsampling_block=_tf_get_downsampling_block,
get_upsampling_block=_get_tf_upsampling_block, name="my_own_model",
dropout_dict=None, num_classes=4, weights=None):
# Downsampling
if dropout_dict is None:
dropout_dict = DROPOUT_DEFAULT
pool = in1
pools = []
argmax_pools = []
for index in range(len(hyper_params['kernels'][:hyper_params['depth']])):
pool, pool_argmax = get_downsampling_block(pool, index, dropout=dropout_dict["downsampling"])
pools.append(pool)
argmax_pools.append(pool_argmax)
# Bottleneck
index = -1
kernel_backup = hyper_params['kernels'][:hyper_params['depth']][index]
conv = Conv2D(kernel_backup, (1, 1), activation=hyper_params['activation'],
padding=hyper_params['padding'])(pools.pop())
if dropout_dict["bottle_neck"] is not None:
conv = Dropout(rate=dropout_dict["bottle_neck"])(conv)
# Upsampling
while pools:
pool = pools.pop()
pool_argmax = argmax_pools.pop()
index -= 1
new_kernel = hyper_params['kernels'][:hyper_params['depth']][index]
conv = get_upsampling_block(conv, pool_argmax, new_kernel,
num=kernel_backup,
activation=hyper_params['activation'],
dropout=dropout_dict["upsampling"])
kernel_backup = new_kernel
if hyper_params['concat'] == Concatenate:
conv = Concatenate()([conv, pool])
elif hyper_params['concat'] == Add:
conv = Add()([conv, pool])
else:
raise KeyError(f"Concatenation {hyper_params['concat']} not known")
out = get_upsampling_block(conv, argmax_pools.pop(), activation=hyper_params['output_function'], dropout=False,
num=kernel_backup, kernels=num_classes)
if weights is not None:
print("WARNING: loss function will not be from tensorflow")
loss = ComplexWeightedAverageCrossEntropy(weights=weights)
else:
loss = CategoricalCrossentropy()
model = Model(inputs=[in1], outputs=[out], name=name)
model.compile(optimizer=hyper_params['optimizer'](learning_rate=hyper_params['learning_rate']), loss=loss,
metrics=[
CategoricalAccuracy(name='accuracy'),
ComplexCategoricalAccuracy(name='complex_accuracy'),
ComplexAverageAccuracy(name='average_accuracy'),
Precision(name='precision'),
Recall(name='recall')
])
return model
def get_my_unet_model(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3), num_classes=4, dtype=np.complex64,
tensorflow: bool = False,
name="my_model", dropout_dict=None, weights=None, hyper_dict: Optional[Dict] = None):
if hyper_dict is not None:
for key, value in hyper_dict.items():
if key in hyper_params.keys():
hyper_params[key] = value
else:
print(f"WARGNING: parameter {key} is not used")
if dropout_dict is None:
dropout_dict = DROPOUT_DEFAULT
if not tensorflow:
in1 = complex_input(shape=input_shape, dtype=dtype)
return _get_my_model(in1, _get_downsampling_block, _get_upsampling_block, dtype=dtype, name=name,
dropout_dict=dropout_dict, num_classes=num_classes, weights=weights)
else:
in1 = Input(shape=input_shape)
return _get_my_model_with_tf(in1, _tf_get_downsampling_block, _get_tf_upsampling_block, name="tf_" + name,
dropout_dict=dropout_dict, num_classes=num_classes, weights=weights)
def get_my_unet_tests(index: int, depth=5, *args, **kwargs):
if index == 0 or index is None:
return get_my_unet_model(*args, hyper_dict={'learning_rate': 0.1, 'depth': depth}, **kwargs)
elif index == 1:
return get_my_unet_model(*args, hyper_dict={'depth': depth}, **kwargs)
elif index == 2: # Good peak.
return get_my_unet_model(*args, hyper_dict={'consecutive_conv_layers': 1, 'depth': depth}, **kwargs)
elif index == 3:
return get_my_unet_model(*args, hyper_dict={'consecutive_conv_layers': 1,
'learning_rate': 0.00001, 'depth': depth}, **kwargs)
elif index == 4:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D, 'depth': depth}, **kwargs)
elif index == 5: # Best ending, with apparently needs more epochs
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 6:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexConv2DTranspose, 'depth': depth}, **kwargs)
elif index == 7:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexConv2DTranspose,
'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 8: # Good peak.
return get_my_unet_model(*args, hyper_dict={'kernel_shape': (5, 5), 'depth': depth}, **kwargs)
elif index == 9:
return get_my_unet_model(*args, hyper_dict={'kernel_shape': (5, 5), 'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 10:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'concat': Concatenate, 'depth': depth},
**kwargs)
elif index == 11:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'concat': Concatenate, 'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 12:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexConv2DTranspose,
'concat': Concatenate, 'depth': depth},
**kwargs)
elif index == 13:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexConv2DTranspose,
'concat': Concatenate, 'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 14: # Good one
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'concat': Concatenate,
'consecutive_conv_layers': 1, 'depth': depth},
**kwargs)
elif index == 15:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'concat': Concatenate,
'consecutive_conv_layers': 1,
'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 16: # VALIDATION WINNER
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'pooling': ComplexAvgPooling2D,
'learning_rate': 0.00001, 'depth': depth,
},
**kwargs)
elif index == 17: # Good one
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'pooling': ComplexAvgPooling2D,
'concat': Concatenate,
'learning_rate': 0.00001, 'depth': depth,
},
**kwargs)
elif index == 18:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'pooling': ComplexAvgPooling2D,
'concat': Concatenate,
'learning_rate': 0.00001,
'consecutive_conv_layers': 1, 'depth': depth,
},
**kwargs)
elif index == 19:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'pooling': ComplexPolarAvgPooling2D,
'learning_rate': 0.00001, 'depth': depth,
},
**kwargs)
elif index == 20:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'pooling': ComplexPolarAvgPooling2D,
'concat': Concatenate,
'learning_rate': 0.00001, 'depth': depth,
},
**kwargs)
elif index == 21:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'pooling': ComplexPolarAvgPooling2D,
'concat': Concatenate,
'learning_rate': 0.00001,
'consecutive_conv_layers': 1, 'depth': depth,
},
**kwargs)
elif index == 22: # Good peak.
return get_my_unet_model(*args, hyper_dict={'kernel_shape': (7, 7), 'depth': depth,}, **kwargs)
elif index == 23:
return get_my_unet_model(*args, hyper_dict={'kernel_shape': (7, 7), 'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 24: # Good peak.
return get_my_unet_model(*args, hyper_dict={'kernel_shape': (9, 9), 'depth': depth,}, **kwargs)
elif index == 25:
return get_my_unet_model(*args, hyper_dict={'kernel_shape': (9, 9), 'learning_rate': 0.00001, 'depth': depth},
**kwargs)
elif index == 26: # Good peak.
return get_my_unet_model(*args, hyper_dict={'consecutive_conv_layers': 2, 'depth': depth,}, **kwargs)
elif index == 27:
return get_my_unet_model(*args, hyper_dict={'consecutive_conv_layers': 2,
'learning_rate': 0.00001, 'depth': depth,}, **kwargs)
elif index == 28:
return get_my_unet_model(*args, hyper_dict={'upsampling_layer': ComplexUpSampling2D,
'pooling': ComplexAvgPooling2D,
'consecutive_conv_layers': 1,
'learning_rate': 0.00001, 'depth': depth,
},
**kwargs)
else:
raise ValueError(f"{index} index out of range.")