forked from jidiai/Competition_3v3snakes
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathspace.py
62 lines (51 loc) · 2.27 KB
/
space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from gym.utils import seeding
class Space(object):
"""Defines the observation and action spaces, so you can write generic
code that applies to any Env. For example, you can choose a random
action.
WARNING - Custom observation & action spaces can inherit from the `Space`
class. However, most use-cases should be covered by the existing space
classes (e.g. `Box`, `Discrete`, etc...), and container classes (`Tuple` &
`Dict`). Note that parametrized probability distributions (through the
`sample()` method), and batching functions (in `gym.vector.VectorEnv`), are
only well-defined for instances of spaces provided in gym by default.
Moreover, some implementations of Reinforcement Learning algorithms might
not handle custom spaces properly. Use custom spaces with care.
"""
def __init__(self, shape=None, dtype=None):
import numpy as np # takes about 300-400ms to import, so we load lazily
self.shape = None if shape is None else tuple(shape)
self.dtype = None if dtype is None else np.dtype(dtype)
self._np_random = None
@property
def np_random(self):
"""Lazily seed the rng since this is expensive and only needed if
sampling from this space.
"""
if self._np_random is None:
self.seed()
return self._np_random
def sample(self):
"""Randomly sample an element of this space. Can be
uniform or non-uniform sampling based on boundedness of space."""
raise NotImplementedError
def seed(self, seed=None):
"""Seed the PRNG of this space. """
self._np_random, seed = seeding.np_random(seed)
return [seed]
def contains(self, x):
"""
Return boolean specifying if x is a valid
member of this space
"""
raise NotImplementedError
def __contains__(self, x):
return self.contains(x)
def to_jsonable(self, sample_n):
"""Convert a batch of samples from this space to a JSONable data type."""
# By default, assume identity is JSONable
return sample_n
def from_jsonable(self, sample_n):
"""Convert a JSONable data type to a batch of samples from this space."""
# By default, assume identity is JSONable
return sample_n