-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathPolylineShadowVolumeVS.glsl
168 lines (137 loc) · 6.94 KB
/
PolylineShadowVolumeVS.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
attribute vec3 position3DHigh;
attribute vec3 position3DLow;
// In 2D and in 3D, texture coordinate normalization component signs encodes:
// * X sign - sidedness relative to right plane
// * Y sign - is negative OR magnitude is greater than 1.0 if vertex is on bottom of volume
#ifndef COLUMBUS_VIEW_2D
attribute vec4 startHiAndForwardOffsetX;
attribute vec4 startLoAndForwardOffsetY;
attribute vec4 startNormalAndForwardOffsetZ;
attribute vec4 endNormalAndTextureCoordinateNormalizationX;
attribute vec4 rightNormalAndTextureCoordinateNormalizationY;
#else
attribute vec4 startHiLo2D;
attribute vec4 offsetAndRight2D;
attribute vec4 startEndNormals2D;
attribute vec2 texcoordNormalization2D;
#endif
attribute float batchId;
varying vec4 v_startPlaneNormalEcAndHalfWidth;
varying vec4 v_endPlaneNormalEcAndBatchId;
varying vec4 v_rightPlaneEC;
varying vec4 v_endEcAndStartEcX;
varying vec4 v_texcoordNormalizationAndStartEcYZ;
// For materials
#ifdef WIDTH_VARYING
varying float v_width;
#endif
#ifdef ANGLE_VARYING
varying float v_polylineAngle;
#endif
#ifdef PER_INSTANCE_COLOR
varying vec4 v_color;
#endif
void main()
{
#ifdef COLUMBUS_VIEW_2D
vec3 ecStart = (czm_modelViewRelativeToEye * czm_translateRelativeToEye(vec3(0.0, startHiLo2D.xy), vec3(0.0, startHiLo2D.zw))).xyz;
vec3 forwardDirectionEC = czm_normal * vec3(0.0, offsetAndRight2D.xy);
vec3 ecEnd = forwardDirectionEC + ecStart;
forwardDirectionEC = normalize(forwardDirectionEC);
// Right plane
v_rightPlaneEC.xyz = czm_normal * vec3(0.0, offsetAndRight2D.zw);
v_rightPlaneEC.w = -dot(v_rightPlaneEC.xyz, ecStart);
// start plane
vec4 startPlaneEC;
startPlaneEC.xyz = czm_normal * vec3(0.0, startEndNormals2D.xy);
startPlaneEC.w = -dot(startPlaneEC.xyz, ecStart);
// end plane
vec4 endPlaneEC;
endPlaneEC.xyz = czm_normal * vec3(0.0, startEndNormals2D.zw);
endPlaneEC.w = -dot(endPlaneEC.xyz, ecEnd);
v_texcoordNormalizationAndStartEcYZ.x = abs(texcoordNormalization2D.x);
v_texcoordNormalizationAndStartEcYZ.y = texcoordNormalization2D.y;
#else // COLUMBUS_VIEW_2D
vec3 ecStart = (czm_modelViewRelativeToEye * czm_translateRelativeToEye(startHiAndForwardOffsetX.xyz, startLoAndForwardOffsetY.xyz)).xyz;
vec3 offset = czm_normal * vec3(startHiAndForwardOffsetX.w, startLoAndForwardOffsetY.w, startNormalAndForwardOffsetZ.w);
vec3 ecEnd = ecStart + offset;
vec3 forwardDirectionEC = normalize(offset);
// start plane
vec4 startPlaneEC;
startPlaneEC.xyz = czm_normal * startNormalAndForwardOffsetZ.xyz;
startPlaneEC.w = -dot(startPlaneEC.xyz, ecStart);
// end plane
vec4 endPlaneEC;
endPlaneEC.xyz = czm_normal * endNormalAndTextureCoordinateNormalizationX.xyz;
endPlaneEC.w = -dot(endPlaneEC.xyz, ecEnd);
// Right plane
v_rightPlaneEC.xyz = czm_normal * rightNormalAndTextureCoordinateNormalizationY.xyz;
v_rightPlaneEC.w = -dot(v_rightPlaneEC.xyz, ecStart);
v_texcoordNormalizationAndStartEcYZ.x = abs(endNormalAndTextureCoordinateNormalizationX.w);
v_texcoordNormalizationAndStartEcYZ.y = rightNormalAndTextureCoordinateNormalizationY.w;
#endif // COLUMBUS_VIEW_2D
v_endEcAndStartEcX.xyz = ecEnd;
v_endEcAndStartEcX.w = ecStart.x;
v_texcoordNormalizationAndStartEcYZ.zw = ecStart.yz;
#ifdef PER_INSTANCE_COLOR
v_color = czm_batchTable_color(batchId);
#endif // PER_INSTANCE_COLOR
// Compute a normal along which to "push" the position out, extending the miter depending on view distance.
// Position has already been "pushed" by unit length along miter normal, and miter normals are encoded in the planes.
// Decode the normal to use at this specific vertex, push the position back, and then push to where it needs to be.
vec4 positionRelativeToEye = czm_computePosition();
// Check distance to the end plane and start plane, pick the plane that is closer
vec4 positionEC = czm_modelViewRelativeToEye * positionRelativeToEye; // w = 1.0, see czm_computePosition
float absStartPlaneDistance = abs(czm_planeDistance(startPlaneEC, positionEC.xyz));
float absEndPlaneDistance = abs(czm_planeDistance(endPlaneEC, positionEC.xyz));
vec3 planeDirection = czm_branchFreeTernary(absStartPlaneDistance < absEndPlaneDistance, startPlaneEC.xyz, endPlaneEC.xyz);
vec3 upOrDown = normalize(cross(v_rightPlaneEC.xyz, planeDirection)); // Points "up" for start plane, "down" at end plane.
vec3 normalEC = normalize(cross(planeDirection, upOrDown)); // In practice, the opposite seems to work too.
// Extrude bottom vertices downward for far view distances, like for GroundPrimitives
upOrDown = cross(forwardDirectionEC, normalEC);
upOrDown = float(czm_sceneMode == czm_sceneMode3D) * upOrDown;
upOrDown = float(v_texcoordNormalizationAndStartEcYZ.y > 1.0 || v_texcoordNormalizationAndStartEcYZ.y < 0.0) * upOrDown;
upOrDown = min(GLOBE_MINIMUM_ALTITUDE, czm_geometricToleranceOverMeter * length(positionRelativeToEye.xyz)) * upOrDown;
positionEC.xyz += upOrDown;
v_texcoordNormalizationAndStartEcYZ.y = czm_branchFreeTernary(v_texcoordNormalizationAndStartEcYZ.y > 1.0, 0.0, abs(v_texcoordNormalizationAndStartEcYZ.y));
// Determine distance along normalEC to push for a volume of appropriate width.
// Make volumes about double pixel width for a conservative fit - in practice the
// extra cost here is minimal compared to the loose volume heights.
//
// N = normalEC (guaranteed "right-facing")
// R = rightEC
// p = angle between N and R
// w = distance to push along R if R == N
// d = distance to push along N
//
// N R
// { \ p| } * cos(p) = dot(N, R) = w / d
// d\ \ | |w * d = w / dot(N, R)
// { \| }
// o---------- polyline segment ---->
//
float width = czm_batchTable_width(batchId);
#ifdef WIDTH_VARYING
v_width = width;
#endif
v_startPlaneNormalEcAndHalfWidth.xyz = startPlaneEC.xyz;
v_startPlaneNormalEcAndHalfWidth.w = width * 0.5;
v_endPlaneNormalEcAndBatchId.xyz = endPlaneEC.xyz;
v_endPlaneNormalEcAndBatchId.w = batchId;
width = width * max(0.0, czm_metersPerPixel(positionEC)); // width = distance to push along R
width = width / dot(normalEC, v_rightPlaneEC.xyz); // width = distance to push along N
// Determine if this vertex is on the "left" or "right"
#ifdef COLUMBUS_VIEW_2D
normalEC *= sign(texcoordNormalization2D.x);
#else
normalEC *= sign(endNormalAndTextureCoordinateNormalizationX.w);
#endif
positionEC.xyz += width * normalEC;
gl_Position = czm_depthClamp(czm_projection * positionEC);
#ifdef ANGLE_VARYING
// Approximate relative screen space direction of the line.
vec2 approxLineDirection = normalize(vec2(forwardDirectionEC.x, -forwardDirectionEC.y));
approxLineDirection.y = czm_branchFreeTernary(approxLineDirection.x == 0.0 && approxLineDirection.y == 0.0, -1.0, approxLineDirection.y);
v_polylineAngle = czm_fastApproximateAtan(approxLineDirection.x, approxLineDirection.y);
#endif
}