-
Notifications
You must be signed in to change notification settings - Fork 18
/
demo_part_edit.py
271 lines (224 loc) · 9.81 KB
/
demo_part_edit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2
from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
from torchvision.utils import save_image
from PIL import Image
# from pytorch_lightning import seed_everything
# from share import *
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import requests
from io import BytesIO
from utils.stable_diffusion_controlnet_inpaint import resize_image, HWC3
device = "cuda" if torch.cuda.is_available() else "cpu"
# Diffusion init using diffusers.
from vlpart.vlpart import build_vlpart
from segment_anything import build_sam, SamPredictor
from segment_anything.utils.amg import remove_small_regions
import detectron2.data.transforms as T
# diffusers==0.14.0 required.
from diffusers import ControlNetModel, UniPCMultistepScheduler
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
base_model_path = "stabilityai/stable-diffusion-2-inpainting"
controlnet_path = "shgao/edit-anything-v0-1-1"
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate
pipe.to(device)
sam_checkpoint = "sam_vit_h_4b8939.pth"
vlpart_checkpoint = "swinbase_part_0a0000.pth"
# vlpart_checkpoint = "swinbase_cascade_pascalpart.pth"
model_type = "default"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(sam)
vlpart = build_vlpart(checkpoint=vlpart_checkpoint)
vlpart.to(device=device)
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device=device))
def get_blip2_text(image):
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
generated_ids = blip_model.generate(**inputs, max_new_tokens=50)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=True)[0].strip()
return generated_text
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann['segmentation']
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img * 255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
return full_img, res
def show_mask(mask):
# mask : h, w, 3
full_img = np.zeros_like(mask, dtype=float)
# full_img[mask[..., 0] != 0] = np.random.random((1, 3)).tolist()[0]
full_img[mask[..., 0] != 0] = [0, 1, 0.25]
full_img[mask[..., 0] == 0] = [1, 1, 1]
full_img = full_img * 255
return full_img
def get_sam_control(image):
masks = mask_generator.generate(image)
full_img, res = show_anns(masks)
return full_img, res
def prompt2mask(original_image, text_prompt):
# original_image = original_image[:, :, :3]
preprocess = T.ResizeShortestEdge([800, 800], 1333)
height, width = original_image.shape[:2]
image = preprocess.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
with torch.no_grad():
predictions = vlpart.inference([inputs], text_prompt=text_prompt)[0]
boxes, masks = None, None
filter_scores, filter_boxes, filter_classes = [], [], []
if "instances" in predictions:
instances = predictions['instances'].to('cpu')
boxes = instances.pred_boxes.tensor if instances.has("pred_boxes") else None
scores = instances.scores if instances.has("scores") else None
classes = instances.pred_classes.tolist() if instances.has("pred_classes") else None
num_obj = len(scores)
for obj_ind in range(num_obj):
category_score = scores[obj_ind]
if category_score < 0.7:
continue
filter_scores.append(category_score)
filter_boxes.append(boxes[obj_ind])
filter_classes.append(classes[obj_ind])
final_m = torch.zeros((original_image.shape[0], original_image.shape[1]))
if len(filter_boxes) > 0:
# sam model inference
sam_predictor.set_image(original_image)
boxes_filter = torch.stack(filter_boxes)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filter, original_image.shape[:2])
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(device),
multimask_output=False,
)
# remove small disconnected regions and holes
fine_masks = []
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
masks = torch.from_numpy(masks)
num_obj = len(scores)
for obj_ind in range(num_obj):
# box = boxes[obj_ind]
score = scores[obj_ind]
if score < 0.5:
continue
m = masks[obj_ind][0]
final_m += m
final_m = (final_m > 0).to('cpu').numpy()
# print(final_m.max(), final_m.min())
return np.dstack((final_m, final_m, final_m)) * 255
def process(input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta):
with torch.no_grad():
mask_image = np.array(prompt2mask(input_image, mask_prompt), dtype=np.uint8)
input_image = HWC3(input_image)
mask_show = show_mask(mask_image)
mask_show = cv2.addWeighted(input_image, 0.6, mask_show.astype('uint8'), 0.4, 0)
# import pdb; pdb.set_trace()
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
print("Generating SAM seg:")
# the default SAM model is trained with 1024 size.
full_segmask, detected_map = get_sam_control(
resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map.astype(np.uint8))
detected_map = cv2.resize(
detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(
detected_map.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
mask_image = HWC3(mask_image.astype(np.uint8))
mask_image = cv2.resize(
mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
mask_image = Image.fromarray(mask_image)
if seed == -1:
seed = random.randint(0, 65535)
# seed_everything(seed)
generator = torch.manual_seed(seed)
x_samples = pipe(
image=img,
mask_image=mask_image,
prompt=[prompt + ', ' + a_prompt] * num_samples,
negative_prompt=[n_prompt] * num_samples,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=control.type(torch.float16),
height=H,
width=W,
).images
results = [x_samples[i] for i in range(num_samples)]
return [full_segmask, mask_show] + results
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
# disable gradio when not using GUI.
if __name__ == '__main__':
image_path = "assets/dog.jpeg"
input_image = Image.open(image_path)
input_image = np.array(input_image, dtype=np.uint8)[:, :, :3]
mask_prompt = 'dog body'
prompt = "zebra"
# mask_prompt = 'chair seat'
# prompt = "cholocate bar"
# mask_prompt = 'cat head'
# prompt = "a cute tiger"
# mask_prompt = 'person hair'
# prompt = "combover hairstyle"
a_prompt = 'best quality, extremely detailed'
n_prompt = 'lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
num_samples = 2
image_resolution = 512
detect_resolution = 512
ddim_steps = 30
guess_mode = False
strength = 1.0
scale = 9.0
seed = -1
eta = 0.0
outputs = process(input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution,
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
image_list = []
input_image = resize_image(input_image, 512)
image_list.append(torch.tensor(input_image))
for i in range(len(outputs)):
each = outputs[i]
if type(each) is not np.ndarray:
each = np.array(each, dtype=np.uint8)
each = resize_image(each, 512)
print(i, each.shape)
image_list.append(torch.tensor(each))
image_list = torch.stack(image_list).permute(0, 3, 1, 2)
save_image(image_list[::2], "sample.jpg", nrow=3,
normalize=True, value_range=(0, 255))