-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_data.py
435 lines (421 loc) · 16.1 KB
/
utils_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import sys
import errno
import torch
import math
import numpy as np
import cv2
from skimage import io
from skimage import color
from urllib.parse import urlparse
gauss_kernel = None
def _gaussian_3d(
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
height=None, depth=None, sigma_horz=None, sigma_vert=None, sigma_z=None, mean_horz=0.5,
mean_vert=0.5, mean_z=0.5):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if depth is None:
depth = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
if sigma_z is None:
sigma_z = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
center_z = mean_z * depth + 0.5
gauss = np.empty((height, width, depth), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
for k in range(width):
gauss[i][j][k] = amplitude \
* math.exp(-(math.pow((j + 1 - center_x) / (sigma_horz * width), 2) / 2.0
+ math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0
+ math.pow((k + 1 - center_z) / (sigma_z * depth), 2) / 2.0))
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def _gaussian(
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
mean_vert=0.5):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
gauss = np.empty((height, width), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def draw_gaussian_3d(image, point, sigma):
global gauss_kernel
# Check if the gaussian is inside
ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma), math.floor(point[2] - 3 * sigma)]
br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma), math.floor(point[2] + 3 * sigma)]
if ul[0] > image.shape[1] or ul[1] > image.shape[0] or ul[2] > image.shape[2] or br[0] < 1 or br[1] < 1 or br[2] < 1:
return image
size = 6 * sigma + 1
if gauss_kernel is None:
g = _gaussian_3d(size)
gauss_kernel = g
else:
g = gauss_kernel
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
g_z = [int(max(1, -ul[2])), int(min(br[2], image.shape[2])) - int(max(1, ul[2])) + int(max(1, -ul[2]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
img_z = [int(max(1, ul[2])), int(min(br[2], image.shape[2]))]
assert (g_x[0] > 0 and g_y[1] > 0)
image[img_z[0] - 1:img_z[1], img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] \
= image[img_z[0] - 1:img_z[1], img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] \
+ g[g_z[0] - 1:g_z[1], g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
image[image > 1] = 1
return image
def draw_gaussian(image, point, sigma):
global gauss_kernel
# Check if the gaussian is inside
ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
return image
size = 6 * sigma + 1
if gauss_kernel is None:
g = _gaussian(size)
gauss_kernel = g
else:
g = gauss_kernel
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
assert (g_x[0] > 0 and g_y[1] > 0)
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
image[image > 1] = 1
return image
#
# def transform(point, center, scale, resolution, invert=False):
# """Generate and affine transformation matrix.
#
# Given a set of points, a center, a scale and a targer resolution, the
# function generates and affine transformation matrix. If invert is ``True``
# it will produce the inverse transformation.
#
# Arguments:
# point {torch.tensor} -- the input 2D point
# center {torch.tensor or numpy.array} -- the center around which to perform the transformations
# scale {float} -- the scale of the face/object
# resolution {float} -- the output resolution
#
# Keyword Arguments:
# invert {bool} -- define wherever the function should produce the direct or the
# inverse transformation matrix (default: {False})
# """
# _pt = torch.ones(3)
# _pt[0] = point[0]
# _pt[1] = point[1]
#
# h = 200.0 * scale
# t = torch.eye(3)
# t[0, 0] = resolution / h
# t[1, 1] = resolution / h
# t[0, 2] = resolution * (-center[0] / h + 0.5)
# t[1, 2] = resolution * (-center[1] / h + 0.5)
#
# if invert:
# t = torch.inverse(t)
#
# new_point = (torch.matmul(t, _pt))[0:2]
#
# return new_point.int()
#
#
# def crop(image, center, scale, resolution=256.0):
# """Center crops an image or set of heatmaps
#
# Arguments:
# image {numpy.array} -- an rgb image
# center {numpy.array} -- the center of the object, usually the same as of the bounding box
# scale {float} -- scale of the face
#
# Keyword Arguments:
# resolution {float} -- the size of the output cropped image (default: {256.0})
#
# Returns:
# [type] -- [description]
# """ # Crop around the center point
# """ Crops the image around the center. Input is expected to be an np.ndarray """
# ul = transform([1, 1], center, scale, resolution, True)
# br = transform([resolution, resolution], center, scale, resolution, True)
# # pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
# if image.ndim > 2:
# newDim = np.array([br[1] - ul[1], br[0] - ul[0],
# image.shape[2]], dtype=np.int32)
# newImg = np.zeros(newDim, dtype=np.uint8)
# else:
# newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
# newImg = np.zeros(newDim, dtype=np.uint8)
# ht = image.shape[0]
# wd = image.shape[1]
# newX = np.array(
# [max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
# newY = np.array(
# [max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
# oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
# oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
# newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
# ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
# newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
# interpolation=cv2.INTER_LINEAR)
# return newImg
#
#
# #@jit(nopython=True)
# def transform_np(point, center, scale, resolution, invert=False):
# """Generate and affine transformation matrix.
#
# Given a set of points, a center, a scale and a targer resolution, the
# function generates and affine transformation matrix. If invert is ``True``
# it will produce the inverse transformation.
#
# Arguments:
# point {numpy.array} -- the input 2D point
# center {numpy.array} -- the center around which to perform the transformations
# scale {float} -- the scale of the face/object
# resolution {float} -- the output resolution
#
# Keyword Arguments:
# invert {bool} -- define wherever the function should produce the direct or the
# inverse transformation matrix (default: {False})
# """
# _pt = np.ones(3)
# _pt[0] = point[0]
# _pt[1] = point[1]
#
# h = 200.0 * scale
# t = np.eye(3)
# t[0, 0] = resolution / h
# t[1, 1] = resolution / h
# t[0, 2] = resolution * (-center[0] / h + 0.5)
# t[1, 2] = resolution * (-center[1] / h + 0.5)
#
# if invert:
# t = np.ascontiguousarray(np.linalg.pinv(t))
#
# new_point = np.dot(t, _pt)[0:2]
#
# return new_point.astype(np.int32)
#
#
# def get_preds_fromhm(hm, center=None, scale=None):
# """Obtain (x,y) coordinates given a set of N heatmaps. If the center
# and the scale is provided the function will return the points also in
# the original coordinate frame.
#
# Arguments:
# hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
#
# Keyword Arguments:
# center {torch.tensor} -- the center of the bounding box (default: {None})
# scale {float} -- face scale (default: {None})
# """
# B, C, H, W = hm.shape
# idx = np.argmax(hm.reshape(B, C, H * W), axis=2)
# preds, preds_orig = _get_preds_fromhm(hm, idx, center, scale)
#
# return preds, preds_orig
#
#
# #@jit(nopython=True)
# def _get_preds_fromhm(hm, idx, center=None, scale=None):
# """Obtain (x,y) coordinates given a set of N heatmaps and the
# coresponding locations of the maximums. If the center
# and the scale is provided the function will return the points also in
# the original coordinate frame.
#
# Arguments:
# hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
#
# Keyword Arguments:
# center {torch.tensor} -- the center of the bounding box (default: {None})
# scale {float} -- face scale (default: {None})
# """
# B, C, H, W = hm.shape
# idx += 1
# preds = idx.repeat(2).reshape(B, C, 2).astype(np.float32)
# preds[:, :, 0] = (preds[:, :, 0] - 1) % W + 1
# preds[:, :, 1] = np.floor((preds[:, :, 1] - 1) / H) + 1
#
# for i in range(B):
# for j in range(C):
# hm_ = hm[i, j, :]
# pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
# if pX > 0 and pX < 63 and pY > 0 and pY < 63:
# diff = np.array(
# [hm_[pY, pX + 1] - hm_[pY, pX - 1],
# hm_[pY + 1, pX] - hm_[pY - 1, pX]])
# preds[i, j] += np.sign(diff) * 0.25
#
# preds -= 0.5
#
# preds_orig = np.zeros_like(preds)
# if center is not None and scale is not None:
# for i in range(B):
# for j in range(C):
# preds_orig[i, j] = transform_np(
# preds[i, j], center, scale, H, True)
#
# return preds, preds_orig
#
#
# def create_target_heatmap(target_landmarks, centers, scales):
# heatmaps = np.zeros((target_landmarks.shape[0], 68, 64, 64), dtype=np.float32)
# for i in range(heatmaps.shape[0]):
# for p in range(68):
# landmark_cropped_coor = transform(target_landmarks[i, p] + 1, centers[i], scales[i], 64, invert=False)
# heatmaps[i, p] = draw_gaussian(heatmaps[i, p], landmark_cropped_coor + 1, 2)
# return torch.tensor(heatmaps)
#
#
# def create_bounding_box(target_landmarks, expansion_factor=0.0):
# """
# gets a batch of landmarks and calculates a bounding box that includes all the landmarks per set of landmarks in
# the batch
# :param target_landmarks: batch of landmarks of dim (n x 68 x 2). Where n is the batch size
# :param expansion_factor: expands the bounding box by this factor. For example, a `expansion_factor` of 0.2 leads
# to 20% increase in width and height of the boxes
# :return: a batch of bounding boxes of dim (n x 4) where the second dim is (x1,y1,x2,y2)
# """
# # Calc bounding box
# x_y_min, _ = target_landmarks.reshape(-1, 68, 2).min(dim=1)
# x_y_max, _ = target_landmarks.reshape(-1, 68, 2).max(dim=1)
# # expanding the bounding box
# expansion_factor /= 2
# bb_expansion_x = (x_y_max[:, 0] - x_y_min[:, 0]) * expansion_factor
# bb_expansion_y = (x_y_max[:, 1] - x_y_min[:, 1]) * expansion_factor
# x_y_min[:, 0] -= bb_expansion_x
# x_y_max[:, 0] += bb_expansion_x
# x_y_min[:, 1] -= bb_expansion_y
# x_y_max[:, 1] += bb_expansion_y
# return torch.cat([x_y_min, x_y_max], dim=1)
#
#
# def shuffle_lr(parts, pairs=None):
# """Shuffle the points left-right according to the axis of symmetry
# of the object.
#
# Arguments:
# parts {torch.tensor} -- a 3D or 4D object containing the
# heatmaps.
#
# Keyword Arguments:
# pairs {list of integers} -- [order of the flipped points] (default: {None})
# """
# if pairs is None:
# pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
# 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
# 34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
# 40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
# 62, 61, 60, 67, 66, 65]
# if parts.ndimension() == 3:
# parts = parts[pairs, ...]
# else:
# parts = parts[:, pairs, ...]
#
# return parts
#
#
# def flip(tensor, is_label=False):
# """Flip an image or a set of heatmaps left-right
#
# Arguments:
# tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]
#
# Keyword Arguments:
# is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
# """
# if not torch.is_tensor(tensor):
# tensor = torch.from_numpy(tensor)
#
# if is_label:
# tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
# else:
# tensor = tensor.flip(tensor.ndimension() - 1)
#
# return tensor
#
#
# def get_image(image_or_path):
# """Reads an image from file or array/tensor and converts it to RGB (H,W,3).
#
# Arguments:
# tensor {Sstring, numpy.array or torch.tensor} -- [the input image or path to it]
# """
# if isinstance(image_or_path, str):
# try:
# image = io.imread(image_or_path)
# except IOError:
# print("error opening file :: ", image_or_path)
# return None
# elif isinstance(image_or_path, torch.Tensor):
# image = image_or_path.detach().cpu().numpy()
# else:
# image = image_or_path
#
# if image.ndim == 2:
# image = color.gray2rgb(image)
# elif image.ndim == 4:
# image = image[..., :3]
#
# return image
#
#
# # Pytorch load supports only pytorch models
# def load_file_from_url(url, model_dir=None, progress=True, check_hash=False, file_name=None):
# if model_dir is None:
# hub_dir = get_dir()
# model_dir = os.path.join(hub_dir, 'checkpoints')
#
# try:
# os.makedirs(model_dir)
# except OSError as e:
# if e.errno == errno.EEXIST:
# # Directory already exists, ignore.
# pass
# else:
# # Unexpected OSError, re-raise.
# raise
#
# parts = urlparse(url)
# filename = os.path.basename(parts.path)
# if file_name is not None:
# filename = file_name
# cached_file = os.path.join(model_dir, filename)
# if not os.path.exists(cached_file):
# sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
# hash_prefix = None
# if check_hash:
# r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
# hash_prefix = r.group(1) if r else None
# download_url_to_file(url, cached_file, hash_prefix, progress=progress)
#
# return cached_file