-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathablation_primp_gora.m
233 lines (182 loc) · 7.2 KB
/
ablation_primp_gora.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
% Script for ablation study on GORA as a pre-process for PRIMP
%
% Author
% Sipu Ruan, 2023
close all; clear; clc;
add_paths()
% Name of the dataset
% dataset_name = 'panda_arm';
dataset_name = 'lasa_handwriting/pose_data';
demo_type = load_dataset_param(dataset_name);
%% Run ablations for each demo type
for i = 1:length(demo_type)
run_ablation(dataset_name, demo_type{i});
end
function run_ablation(dataset_name, demo_type)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tunable parameters
% ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
% Number of trials for the ablation study
n_trial = 50;
% Number of samples on distribution
n_sample = 5;
% Number of time steps
n_step = 50;
% Group name
group_name = 'PCG';
% Scaling of via pose mean and covariance
VIA_POSE_SCALE.mean = [1e-3 * ones(3,1); 1e-4 * ones(3,1)];
VIA_POSE_SCALE.covariance = 1e-4;
% Indicator of whether to generate random via/goal poses
is_generate_random = true;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data_folder = strcat("../data/", dataset_name, "/", demo_type, "/");
result_folder = strcat("../result/ablation/gora/", dataset_name, "/",...
demo_type, "/");
mkdir(result_folder);
%% Load and parse demo data
argin.n_step = n_step;
argin.data_folder = data_folder;
argin.group_name = group_name;
filenames = dir(strcat(argin.data_folder, "*.json"));
% Parse demo trajectories
% with GORA
argin.align_method = 'gora';
g_demo = parse_demo_trajectory(filenames, argin);
[g_mean, cov_t] = get_pdf_from_demo(g_demo, group_name);
% without GORA
argin.align_method = 'interp';
g_demo_no_gora = parse_demo_trajectory(filenames, argin);
[g_mean_no_gora, cov_t_no_gora] = get_pdf_from_demo(g_demo_no_gora,...
group_name);
% with original DTW
argin.align_method = 'dtw';
g_demo_no_gora = parse_demo_trajectory(filenames, argin);
[g_mean_dtw, cov_t_dtw] = get_pdf_from_demo(g_demo_no_gora,...
group_name);
% Generate or load random via/goal poses
if is_generate_random
mkdir(result_folder);
% Generate random via/goal poses
t_trials = [ones(n_trial, 1), rand(n_trial, 1)];
trials = generate_random_trials(g_demo{1}, t_trials, VIA_POSE_SCALE,...
result_folder);
disp("Generated random configurations!")
else
% Load random configurations for conditioning
trials = load_random_trials(result_folder);
n_trial = length(trials.t_via{1});
disp("Loaded randomly generated configurations!");
end
%% Ablation
res_primp = cell(n_trial, 1);
res_primp_no_gora = cell(n_trial, 1);
res_primp_dtw = cell(n_trial, 1);
for i = 1:n_trial
clc;
disp('Ablation study for GORA subroutine in PRIMP')
disp(['Dataset: ', dataset_name])
disp(['Demo type: ', demo_type])
disp(['Group: ', group_name])
disp([num2str(i/(n_trial) * 100), '%'])
% Load random via/goal poses
g_goal = trials.g_via{1}(:,:,i);
cov_goal = trials.cov_via{1}(:,:,i);
t_via = trials.t_via{2}(i);
g_via = trials.g_via{2}(:,:,i);
cov_via = trials.cov_via{2}(:,:,i);
% Initiate class
param.n_sample = n_sample;
param.group_name = group_name;
res_primp{i}.group_name = param.group_name;
res_primp_no_gora{i}.group_name = param.group_name;
res_primp_dtw{i}.group_name = param.group_name;
%% Main routine
primp_obj = PRIMP(g_mean.matrix, cov_t, param);
primp_no_gora_obj = PRIMP(g_mean_no_gora.matrix, cov_t_no_gora, param);
primp_dtw_obj = PRIMP(g_mean_dtw.matrix, cov_t_dtw, param);
% PRIMP
t_start = tic;
primp_obj.get_condition_pdf(1.0, g_goal, cov_goal);
primp_obj.get_condition_pdf(t_via, g_via, cov_via);
g_samples = primp_obj.get_samples();
metric_primp.time(i,1) = toc(t_start);
% PRIMP without GORA (ablated)
t_start = tic;
primp_no_gora_obj.get_condition_pdf(1.0, g_goal, cov_goal);
primp_no_gora_obj.get_condition_pdf(t_via, g_via, cov_via);
g_samples_no_gora = primp_no_gora_obj.get_samples();
metric_primp_no_gora.time(i,1) = toc(t_start);
% PRIMP with DTW
t_start = tic;
primp_dtw_obj.get_condition_pdf(1.0, g_goal, cov_goal);
primp_dtw_obj.get_condition_pdf(t_via, g_via, cov_via);
g_samples_dtw = primp_dtw_obj.get_samples();
metric_primp_dtw.time(i,1) = toc(t_start);
%% Distance to desired pose and original trajectory
% Convert to group structure
res_primp{i} =...
generate_pose_struct(g_samples, param.group_name);
res_primp_no_gora{i} =...
generate_pose_struct(g_samples_no_gora, param.group_name);
res_primp_dtw{i} =...
generate_pose_struct(g_samples_dtw, param.group_name);
% Distance to demonstrated trajectories
metric_primp.d_demo(i,:) =...
evaluate_traj_distribution(res_primp{i}, g_demo);
metric_primp_no_gora.d_demo(i,:) =...
evaluate_traj_distribution(res_primp_no_gora{i}, g_demo);
metric_primp_dtw.d_demo(i,:) =...
evaluate_traj_distribution(res_primp_dtw{i}, g_demo);
% Distance to desired pose
metric_primp.d_via(i,:) =...
evaluate_desired_pose(res_primp{i}, g_via, t_via);
metric_primp_no_gora.d_via(i,:) =...
evaluate_desired_pose(res_primp_no_gora{i}, g_via, t_via);
metric_primp_dtw.d_via(i,:) =...
evaluate_desired_pose(res_primp_dtw{i}, g_via, t_via);
end
%% Evaluation of ablation study
% Store results as .mat file
res_filename = strcat(result_folder, "result_ablation_primp_gora.mat");
save(res_filename, "res_primp", "res_primp_no_gora", "res_primp_dtw",...
"metric_primp", "metric_primp_no_gora", "metric_primp_dtw",...
"group_name");
% Display and store command window
diary_filename = strcat(result_folder, "result_ablation_primp_gora.txt");
if exist(diary_filename, 'file') ; delete(diary_filename); end
diary(diary_filename);
disp('===============================================================')
disp('Ablation results for GORA subroutine in PRIMP')
disp(['Group: ', group_name])
disp('===============================================================')
disp('>>>> PRIMP <<<<')
disp('---- Distance to demo (rot, tran):')
disp(num2str( mean(metric_primp.d_demo, 1) ))
disp('---- Distance to desired pose (rot, tran):')
disp(num2str( mean(metric_primp.d_via, 1) ))
disp('---- Averaged computation time ----')
disp(num2str( mean(metric_primp.time, 1) ))
disp('---------------------------------------------------------------')
disp('>>>> PRIMP without GORA (ablated) <<<<')
disp('---- Distance to demo (rot, tran):')
disp(num2str( mean(metric_primp_no_gora.d_demo, 1) ))
disp('---- Distance to desired pose (rot, tran):')
disp(num2str( mean(metric_primp_no_gora.d_via, 1) ))
disp('---- Averaged computation time ----')
disp(num2str( mean(metric_primp_no_gora.time, 1) ))
disp('---------------------------------------------------------------')
disp('>>>> PRIMP with DTW <<<<')
disp('---- Distance to demo (rot, tran):')
disp(num2str( mean(metric_primp_dtw.d_demo, 1) ))
disp('---- Distance to desired pose (rot, tran):')
disp(num2str( mean(metric_primp_dtw.d_via, 1) ))
disp('---- Averaged computation time ----')
disp(num2str( mean(metric_primp_dtw.time, 1) ))
diary off
% Computational time
figure; hold on;
t = [metric_primp.time, metric_primp_no_gora.time, metric_primp_dtw.time];
boxplot(t)
ylim([0, max(max(t))])
end