-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpikachu.py
277 lines (226 loc) · 10.8 KB
/
pikachu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import logging
import time
from logging import debug as DEBUG
import mxnet as mx
from easydict import EasyDict as edict
from mxnet.contrib.symbol import MultiBoxPrior
from mxnet.contrib.symbol import MultiBoxTarget
from dataset_util import get_iterators
from resnet import get_resnet_symbol
from mxnet.model import BatchEndParam
from mxnet.base import _as_list
from metric import LogMetricsCallback
import time
logger = logging.getLogger()
handler = logging.StreamHandler()
formatter = logging.Formatter(
'%(asctime)s %(name)-12s %(levelname)-8s %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
def class_predictor(sym, num_anchors, num_classes):
"""return a layer to predict classes"""
if num_classes == 1:
# set num_classes to 0 if only detect foreground and background
num_classes = 1
return mx.sym.Convolution(data=sym, num_filter=num_anchors * (num_classes + 1),
kernel=(3, 3), pad=(1, 1), stride=(1, 1), no_bias=True)
def box_predictor(sym, num_anchors):
"""return a layer to predict delta locations"""
return mx.sym.Convolution(data=sym, num_filter=num_anchors * 4, kernel=(3, 3), pad=(1, 1), stride=(1, 1),
no_bias=True)
def verify_shape(sym, data_shape, label_shape=None):
if label_shape == None:
args_shape, out_shape, aux_shape = sym.infer_shape(data=data_shape)
else:
args_shape, out_shape, aux_shape = sym.infer_shape(data=data_shape, label=label_shape)
return "The output shape is {}".format(out_shape)
def save_plot(sym, name, data_shape, label_shape=None):
if label_shape is None:
plot = mx.viz.plot_network(sym, shape={'data': data_shape})
else:
plot = mx.viz.plot_network(sym, shape={'data': data_shape, 'label': label_shape})
plot.render(name)
def get_all_bn_layers(final_sym, layer_list):
layers = []
all_layers = final_sym.get_internals()
for name in layer_list:
layers.append(all_layers[name])
return layers
def training_targets(default_anchors, class_predicts, labels):
class_predicts = mx.sym.transpose(class_predicts, axes=(0, 2, 1))
z = MultiBoxTarget(anchor=default_anchors, label=labels, cls_pred=class_predicts)
box_target = z[0]
box_mask = z[1]
cls_target = z[2]
return box_target, box_mask, cls_target
def flatten_prediction(pred):
return mx.sym.flatten(mx.sym.transpose(pred, axes=(0, 2, 3, 1)))
def concat_predictions(preds):
return mx.sym.concat(*preds, dim=1)
def callback(metric_list, callback_list):
for metric in metric_list:
batch_end_params = BatchEndParam(epoch=epoch,
nbatch=i,
eval_metric=metric,
locals=locals())
for callback in _as_list(batch_end_callback):
callback(batch_end_params)
class FocalLoss():
def __init__(self, axis=-1, alpha=0.25, gamma=2, batch_axis=0, **kwargs):
self._batch_axis = batch_axis
self._axis = axis
self._alpha = alpha
self._gamma = gamma
def hybrid_forward(self, output, label):
output = mx.sym.softmax(output)
pt = mx.sym.pick(output, label, axis=self._axis, keepdims=True)
loss = -self._alpha * ((1 - pt) ** self._gamma) * mx.sym.log(pt)
return mx.sym.mean(loss, axis=self._batch_axis, exclude=True)
class SmoothL1Loss():
def __init__(self, batch_axis=0, **kwargs):
self._batch_axis = batch_axis
def hybrid_forward(self, output, label, mask):
loss = mx.sym.smooth_l1((output - label) * mask, scalar=1.0)
return mx.sym.mean(loss, self._batch_axis, exclude=True)
def SSD_builder(args):
# get resnet symbol
resnet = get_resnet_symbol(num_classes=1, num_layers=18, image_shape=args.image_shape)
last_relu = resnet.get_internals()['relu1_output']
data = resnet.get_internals()['data']
label = mx.sym.Variable('label')
# extract the layers right before downsampling
multiscalelayers_name = args.multiscalelayers_name
multiscalelayers_layers = get_all_bn_layers(last_relu, multiscalelayers_name)
# Build the predict boxes
predicted_boxes = []
predicted_classes = []
default_anchors = []
# Add relu+conv
for layer, size, ratio in zip(multiscalelayers_layers, args.anchor_sizes, args.anchor_ratios):
DEBUG("Verify the output shape of the layer: {}".format(layer.name))
DEBUG("Before->" + verify_shape(layer, (1, 3) + tuple(args.data_shape)))
relu = mx.sym.Activation(data=layer, act_type='relu', name=layer.name + '_relu')
boxes = box_predictor(relu, args.num_anchors)
classes = class_predictor(relu, args.num_anchors, args.num_classes)
anchors = MultiBoxPrior(layer, sizes=size, ratios=ratio, clip=True)
DEBUG("After Box->" + verify_shape(boxes, (1, 3) + tuple(args.data_shape)))
DEBUG("After Class->" + verify_shape(classes, (1, 3) + tuple(args.data_shape)))
DEBUG("After Anchor->" + verify_shape(anchors, (1, 3) + tuple(args.data_shape)))
predicted_boxes.append(flatten_prediction(boxes))
predicted_classes.append(flatten_prediction(classes))
default_anchors.append(anchors)
all_anchors = concat_predictions(default_anchors)
all_classes_pred = mx.sym.reshape(concat_predictions(predicted_classes), shape=(0, -1, args.num_classes + 1))
all_boxes_pred = concat_predictions(predicted_boxes)
DEBUG("All anchors->" + verify_shape(all_anchors, (1, 3) + tuple(args.data_shape)))
DEBUG("All classes->" + verify_shape(all_classes_pred, (1, 3) + tuple(args.data_shape)))
DEBUG("All boxes->" + verify_shape(all_boxes_pred, (1, 3) + tuple(args.data_shape)))
# setup groundtruth label
box_target, box_mask, cls_target = training_targets(all_anchors, all_classes_pred, label)
DEBUG("box_target->" + verify_shape(box_target, (1, 3) + tuple(args.data_shape), (1, 1, 5)))
DEBUG("box_mask->" + verify_shape(box_mask, (1, 3) + tuple(args.data_shape), (1, 1, 5)))
DEBUG("cls_target->" + verify_shape(cls_target, (1, 3) + tuple(args.data_shape), (1, 1, 5)))
cls_loss = FocalLoss()
box_loss = SmoothL1Loss()
loss1 = cls_loss.hybrid_forward(all_classes_pred, cls_target)
loss2 = box_loss.hybrid_forward(all_boxes_pred, box_target, box_mask)
loss = loss1 + loss2
DEBUG("Final loss->" + verify_shape(loss, (1, 3) + tuple(args.data_shape), (1, 1, 5)))
loss_make = mx.sym.MakeLoss(loss)
output = mx.sym.Group([loss_make,
mx.sym.BlockGrad(all_classes_pred), mx.sym.BlockGrad(cls_target),
mx.sym.BlockGrad(all_boxes_pred), mx.sym.BlockGrad(box_target),
mx.sym.BlockGrad(box_mask)])
return output
if __name__ == "__main__":
# setup configure setting
args = edict()
args.batch_size = 32
args.data_shape = (256, 256)
args.num_classes = 1
args.image_shape = "3, 256,256"
args.save_plot = False
args.infer_shape = True
args.num_anchors = 4
args.multiscalelayers_name = ["bn0_output", "stage2_unit1_bn1_output",
"stage3_unit1_bn1_output", "stage4_unit1_bn1_output", "bn1_output"]
args.anchor_sizes = [[.2, .272], [.37, .447], [.54, .619], [.71, .79], [.88, .961]]
args.anchor_ratios = ([[1, 2, .5]] * 5)
args.epoch = 100
args.learning_rate = 0.001
args.optimizer = 'adam'
args.ctx = mx.gpu(0)
args.log_interval = 2
args.save_name = "pikachu"
args.optimizer = "adam"
args.prefix = "SSD_resnet"
# get training/testing dataset
train_data, test_data, class_names, num_class = \
get_iterators(args.data_shape[0], args.batch_size)
train_data.reshape(label_shape=(3, 5))
train_data = test_data.sync_label_shape(train_data)
train_data.provide_data = [('data', (32, 3, 256, 256))]
loss = SSD_builder(args)
# setup checkpoint callback function
checkpoint = mx.callback.do_checkpoint(args.save_name)
# set optimizer
optimizer_params = {
'learning_rate': args.learning_rate,
}
tme = time.time()
batch_end_callback = [
LogMetricsCallback('logs/train-' + str(tme)),
]
val_batch_end_callback = [
LogMetricsCallback('logs/val-' + str(tme)),
]
mod = mx.mod.Module(context=mx.gpu(0),
symbol=loss,
data_names=['data'],
label_names=['label'])
mod.bind(data_shapes=[('data', (args.batch_size, 3, args.data_shape[0], args.data_shape[1]))],
label_shapes=train_data.provide_label,
for_training=True)
mod.init_params(mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2.))
mod.init_optimizer(optimizer=args.optimizer, optimizer_params=(('learning_rate', args.learning_rate),))
# setup metric
cls_metric = mx.metric.Accuracy()
box_metric = mx.metric.MAE() # measure absolute difference between prediction and target
for epoch in range(args.epoch):
train_data.reset()
cls_metric.reset()
box_metric.reset()
tic = time.time()
for i, batch in enumerate(train_data):
btic = time.time()
mod.forward(batch, is_train=True)
preds = mod.get_outputs(merge_multi_context=True)
loss, all_classes_pred, cls_target, all_boxes_pred, box_target, box_mask = preds
cls_metric.update([cls_target], [mx.nd.transpose(all_classes_pred, (0, 2, 1))])
box_metric.update([box_target], [all_boxes_pred * box_mask])
callback([cls_metric, box_metric], batch_end_callback)
mod.backward()
mod.update()
if (i + 1) % args.log_interval == 0:
name1, val1 = cls_metric.get()
name2, val2 = box_metric.get()
print('[Epoch %d Batch %d] speed: %f samples/s, training: %s=%f, %s=%f'
% (epoch, i, args.batch_size / (time.time() - btic), name1, val1, name2, val2))
# end of epoch logging
name1, val1 = cls_metric.get()
name2, val2 = box_metric.get()
print('[Epoch %d] training: %s=%f, %s=%f' % (epoch, name1, val1, name2, val2))
print('[Epoch %d] time cost: %f' % (epoch, time.time() - tic))
mod.save_checkpoint(args.prefix, epoch)
# validation
train_data.reset()
cls_metric.reset()
box_metric.reset()
for j, batch in enumerate(train_data):
mod.forward(batch, is_train=False)
preds = mod.get_outputs(merge_multi_context=True)
loss, all_classes_pred, cls_target, all_boxes_pred, box_target, box_mask = preds
cls_metric.update([cls_target], [mx.nd.transpose(all_classes_pred, (0, 2, 1))])
box_metric.update([box_target], [all_boxes_pred * box_mask])
callback([cls_metric, box_metric], val_batch_end_callback)