-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
297 lines (258 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import nest_asyncio
nest_asyncio.apply()
import os, re
import chainlit as cl
import pickle
import chromadb
from utils import clean_text
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader, StorageContext, PromptTemplate
from llama_index.core.llms import ChatMessage
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.llms.openai_like import OpenAILike
from llama_index.embeddings.instructor import InstructorEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine
from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank
from llama_index.core.retrievers import VectorIndexRetriever, BaseRetriever, RouterRetriever
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.retrievers.bm25 import BM25Retriever
import argparse
parser = argparse.ArgumentParser(description='Parse command-line arguments')
parser.add_argument('--port', type=int, help='Port number')
parser.add_argument('-w', help='w')
parser.add_argument('run', help='run')
args = parser.parse_args()
def messages_to_prompt(messages):
prompt = ""
for message in messages:
prompt += f"<|start_header_id|>{message.role}<|end_header_id|>\n\n{message.content}<|eot_id|>"
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
return prompt
LLM = OpenAILike(
model="llama3-8b-instruct",
api_base="http://vllm:8000/v1",
api_key="fake",
temperature=0.0,
max_tokens=512,
is_chat_model=True,
messages_to_prompt=messages_to_prompt,
)
CONTEXT_PROMPT = """\
You're a Supermicro product expert, and you will answer questions based on the provided documents.
To answer questions accurately, you may need to extract information in tables, figures, diagrams. Do not use any other information to answer the question and provide a detailed answer to the question, highlighting Supermicro and its products' power savings and green computing benefits.
Firstly, highlight GPU characteristics and GPU products. Secondly, mention power-related features, such as fan cooling or liquid cooling, power consumption, etc. Thirdly, try to mention green computing benefits.
If you don't know the answer, please say "Sorry, I haven't been trained with that data yet."
Context information is below.
---------------------
{context_str}
---------------------
Please provide url when applicable if you are answering the question from the "FAQ" document.
\
"""
EMBEDDING = InstructorEmbedding(
model_name="hkunlp/instructor-xl",
query_instruction='Represent the question for retrieving supporting documents: ',
text_instruction='Represent the document for retrieval: ',
)
DB_PATH = "./chroma_db_v1"
DB_PATH_DS = "./chroma_db_v1_ds"
DB_PATH_FAQ = "./csvtest"
chroma_client = chromadb.PersistentClient(DB_PATH)
chroma_collection = chroma_client.get_collection("test_v1")
VECTOR_STORE = ChromaVectorStore(chroma_collection=chroma_collection)
chroma_client2 = chromadb.PersistentClient(DB_PATH_FAQ)
chroma_collection2 = chroma_client2.get_collection("csv")
VECTOR_STORE_FAQ = ChromaVectorStore(chroma_collection=chroma_collection2)
Settings.llm = LLM
Settings.embed_model = EMBEDDING
Settings.num_output = 512
Settings.context_window = 8192
# for vector search
index = VectorStoreIndex.from_vector_store(
vector_store=VECTOR_STORE,
embed_model=EMBEDDING,
)
index_faq = VectorStoreIndex.from_vector_store(
vector_store=VECTOR_STORE_FAQ,
embed_model=EMBEDDING,
)
# for bm25 search
with open(f"{DB_PATH}/nodes.pickle", 'rb') as f:
global nodes
nodes = pickle.load(f)
with open(f"{DB_PATH_DS}/nodes.pickle", 'rb') as f:
global nodes_ds
nodes_ds = pickle.load(f)
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, tokenizer=clean_text, similarity_top_k=5)
bm25_retriever_ds = BM25Retriever.from_defaults(nodes=nodes_ds, tokenizer=clean_text, similarity_top_k=10)
def get_query(input_text, start_tag, end_tag):
# Construct the regular expression pattern to match text between start_tag and end_tag
pattern = re.compile(rf'{re.escape(start_tag)}(.*?){re.escape(end_tag)}', re.DOTALL)
# Use re.findall() to find all occurrences of the pattern in the input text
matches = re.findall(pattern, input_text)
return matches
# Advanced - Hybrid Retriever + Re-Ranking
class HybridRetriever(BaseRetriever):
def __init__(self, vector_retriever, bm25_retriever):
self.vector_retriever = vector_retriever
self.bm25_retriever = bm25_retriever
super().__init__()
def _retrieve(self, query, **kwargs):
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
# combine the two lists of nodes
all_nodes = []
node_ids = set()
for n in bm25_nodes + vector_nodes:
if n.node.node_id not in node_ids:
all_nodes.append(n)
node_ids.add(n.node.node_id)
return all_nodes
def query_engine_router(index, type_):
rankergpt = RankGPTRerank(
llm=LLM,
top_n=10,
verbose=True,
)
memory = ChatMemoryBuffer.from_defaults(
token_limit=8192
)
query_engine = None
if type_ == "hybrid":
vector_retriever = index.as_retriever(similarity_top_k=7)
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever) # 15 docs
query_engine = ContextChatEngine.from_defaults(
retriever=hybrid_retriever,
#node_postprocessors=[reranker],
node_postprocessors=[rankergpt],
llm=LLM,
memory=memory,
context_template=CONTEXT_PROMPT,
)
elif type_ == "vector":
vector_retriever = index.as_retriever(similarity_top_k=5)
query_engine = ContextChatEngine.from_defaults(
retriever=vector_retriever,
node_postprocessors=[rankergpt],
llm=LLM,
memory=memory,
context_template=CONTEXT_PROMPT,
)
elif type_ == "bm25_spec":
query_engine = ContextChatEngine.from_defaults(
retriever=bm25_retriever_ds,
llm=LLM,
memory=memory,
context_template=CONTEXT_PROMPT,
)
else:
query_engine = SimpleChatEngine.from_defaults(
llm=LLM,
memory=memory,
)
return query_engine
@cl.on_chat_start
async def start():
cl.user_session.set("sources", [])
cl.user_session.set("query_engine_bm25_s", query_engine_router(index, "bm25_spec"))
cl.user_session.set("query_engine_hybrid", query_engine_router(index, "hybrid"))
cl.user_session.set("query_engine_vector_faq", query_engine_router(index_faq, "vector"))
cl.user_session.set("query_engine_simple", query_engine_router(index, None))
cl.user_session.set("message_history", [])
await cl.Message(
author="SuperGPT", content="Hello! How may I help you?"
).send()
async def set_sources(source_nodes, response_message):
label_list = []
count = 1
above_zero_nodes = []
for sr in source_nodes:
print(sr.get_score())
#print(sr.node.text)
if sr.get_score() > 0.03:
above_zero_nodes.append(sr)
pdfs = set()
elements = []
end = len(above_zero_nodes) if len(above_zero_nodes) < 4 else 4
print(len(above_zero_nodes))
if len(above_zero_nodes) > 0:
for sr in above_zero_nodes[:end]:
if chroma_collection.get(ids = sr.id_)['ids']:
node = chroma_collection.get(ids = sr.id_)
else:
node = chroma_collection2.get(ids = sr.id_)
file_name = str(node["metadatas"][0]["file_name"])
pdfs.add(file_name)
print("-" * 10, sr)
elements.append(
cl.Text(
name=file_name.split('.')[0] + ".chunk_" + str(count),
content=f"{sr.node.text}",
display="side",
size="small",
)
)
label_list.append(file_name.split('.')[0] + ".chunk_" + str(count))
count += 1
count = 1
for pdf in pdfs:
if os.path.exists(f"./SOURCE_DOCUMENTS/{pdf}"):
elements.append(cl.Pdf(name=pdf, display="page", path=f"./SOURCE_DOCUMENTS/{pdf}"))
count += 1
response_message.elements = elements
response_message.content += "\n\nSources: " + ", ".join(label_list)
response_message.content += "\nSource pdfs: " + ", ".join(pdfs)
await response_message.update()
@cl.on_message
async def main(user_message: cl.Message):
n_history_messages = 12
message_history = cl.user_session.get("message_history")
chat_history = [
ChatMessage(
role=past_message['author'],
content=past_message['content'],
)
for past_message in message_history
]
query_engine = None
if len(message_history) == 0:
query_text = user_message.content.lower()
print(query_text)
query_words = query_text.split(' ')
product_prefix = ['ars-', 'as-', 'asg-', 'ssg-', 'sys-']
skus = ['4u', '1u', '2u', '5u', '8u', '10u']
if any(prefix in query_text for prefix in product_prefix) or any(sku in query_words for sku in skus):
print("bm25s")
query_engine = cl.user_session.get("query_engine_bm25_s") # 10 docs
else:
retriever = index_faq.as_retriever(similarity_top_k=5)
res = retriever.retrieve(query_text)
if res[0].score > 0.7:
print("faq")
query_engine = cl.user_session.get("query_engine_vector_faq")
else:
print("hybrid")
query_engine = cl.user_session.get("query_engine_hybrid") # 10 docs
else:
query_engine = cl.user_session.get("query_engine_simple")
response = await cl.make_async(query_engine.stream_chat)(
message=user_message.content,
chat_history=chat_history,
)
assistant_message = cl.Message(content="", author="SuperGPT")
for token in response.response_gen:
await assistant_message.stream_token(token)
await assistant_message.send()
if hasattr(response, 'sources') and len(response.sources) > 0:
message_history.append({"author": "system", "content": response.sources[0].content})
message_history.append({"author": "user", "content": user_message.content})
message_history.append({"author": "assistant", "content": assistant_message.content})
if len(message_history) > n_history_messages:
message_history = [message_history[0]] + message_history[-n_history_messages:]
cl.user_session.set("message_history", message_history)
sources = cl.user_session.get("sources")
if len(sources) == 0 and hasattr(response, 'source_nodes'):
await set_sources(response.source_nodes, assistant_message)
cl.user_session.set("sources", response.source_nodes)
else:
await set_sources(sources, assistant_message)