-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathDifferentialEvolutiontp_flash.jl
executable file
·176 lines (158 loc) · 6.43 KB
/
DifferentialEvolutiontp_flash.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#=
Original code by Thomas Moore
@denbigh
included in https://github.com/ClapeyronThermo/Clapeyron.jl/pull/56
=#
"""
DETPFlash(; numphases = 2,
max_steps = 1e4*(numphases-1),
population_size =20,
time_limit = Inf,
verbose = false,
logspace = false,
equilibrium = :auto)
Method to solve non-reactive multicomponent flash problem by finding global minimum of Gibbs Free Energy via Differential Evolution.
User must assume a number of phases, `numphases`. If true number of phases is smaller than numphases, model should predict either (a) identical composition in two or more phases, or (b) one phase with negligible total number of moles. If true number of phases is larger than numphases, a thermodynamically unstable solution will be predicted.
The optimizer will stop at `max_steps` evaluations or at `time_limit` seconds
The `equilibrium` keyword allows to restrict the search of phases to just liquid-liquid equilibria (`equilibrium = :lle`). the default searches for liquid and gas phases.
"""
Base.@kwdef struct DETPFlash <: TPFlashMethod
numphases::Int = 2
max_steps::Int = 1e4*(numphases-1)
population_size::Int = 50
time_limit::Float64 = Inf
verbose::Bool = false
logspace::Bool = false
equilibrium::Symbol = :auto
end
index_reduction(flash::DETPFlash,z) = flash
#z is the original feed composition, x is a matrix with molar fractions, n is a matrix with molar amounts
function partition!(dividers,n,x,nvals)
numphases, numspecies = size(x)
@inbounds for j = 1:numspecies
nvals[1,j] = dividers[1,j]*n[j]
for i = 2:numphases - 1
Σ = sum(@view(nvals[1:(i-1), j]))
nvals[i,j] = dividers[i,j]*(n[j] - Σ)
end
Σphases = sum(@view(nvals[1:(numphases-1), j]))
nvals[numphases, j] = n[j] - Σphases
end
#Calculate mole fractions xij
for i = 1:numphases
ni = @view(nvals[i, :])
invn = 1/sum(ni)
xi = @view(x[i, :])
xi .= ni
xi .*= invn
end
end
function tp_flash_impl(model::EoSModel, p, T, n, method::DETPFlash)
model = __tpflash_cache_model(model,p,T,n,method.equilibrium)
numspecies = length(model)
TYPE = typeof(p+T+first(n))
numphases = method.numphases
x = zeros(TYPE,numphases, numspecies)
nvals = zeros(TYPE,numphases, numspecies)
logspace = method.logspace
volumes = zeros(TYPE,numphases)
GibbsFreeEnergy(dividers) = Obj_de_tp_flash(model,p,T,n,dividers,numphases,x,nvals,volumes,logspace,method.equilibrium)
#Minimize Gibbs Free Energy
#=
options = Metaheuristics.Options(time_limit = method.time_limit,iterations = method.max_steps,seed = UInt(373))
algorithm = Metaheuristics.WOA(N=method.population_size,options=options)
bounds = vcat(zeros(TYPE,(1,numspecies*(numphases-1))),ones(TYPE,1,numspecies*(numphases-1)))
result = Metaheuristics.optimize(GibbsFreeEnergy,bounds,algorithm)
dividers = reshape(Metaheuristics.minimizer(result),
(numphases - 1, numspecies))
best_f = Metaheuristics.minimum(result)
=#
if logspace
bounds = (log(4*eps(TYPE)),zero(TYPE))
else
bounds = (zero(TYPE),one(TYPE))
end
result = BlackBoxOptim.bboptimize(GibbsFreeEnergy;
SearchRange = bounds,
NumDimensions = numspecies*(numphases-1),
MaxSteps=method.max_steps,
PopulationSize = method.population_size,
MaxTime = method.time_limit,
TraceMode = ifelse(method.verbose,:verbose,:silent))
dividers = reshape(BlackBoxOptim.best_candidate(result),
(numphases - 1, numspecies))
g = BlackBoxOptim.best_fitness(result)
#Initialize arrays xij and nvalsij,
#where i in 1..numphases, j in 1..numspecies
#xij is mole fraction of j in phase i.
#nvals is mole numbers of j in phase i.
if logspace
dividers .= exp.(dividers)
end
partition!(dividers,n,x,nvals)
comps = [vec(x[i,:]) for i in 1:numphases]
βi = [sum(@view(nvals[i,:])) for i in 1:numphases]
return FlashResult(comps, βi, volumes, FlashData(p,T,g))
end
"""
Obj_de_tp_flash(model,p,T,z,dividers,numphases,vcache,logspace = false)
Function to calculate Gibbs Free Energy for given partition of moles between phases.
This is a little tricky.
We must find a way of uniquely converting a vector of numbers,
each in (0, 1), to a partition. We must be careful that
the mapping is 1-to-1, not many-to-1, as if many inputs
map to the same physical state in a redundant way, there
will be multiple global optima, and the global optimization
will perform poorly.
Our approach is to specify (numphases-1) numbers in (0,1) for
each species. We then scale these numbers systematically in order to partition
the species between the phases. Each set of (numphases - 1) numbers
will result in a unique partition of the species into the numphases
phases.
vcache stores the current volumes for each phase
"""
function Obj_de_tp_flash(model,p,T,n,dividers,numphases,x,nvals,vcache,logspace = false,equilibrium = :auto)
_0 = zero(p+T+first(n))
numspecies = length(n)
TYPE = typeof(_0)
bignum = TYPE(1e300)
if logspace
dividers .= exp.(dividers)
end
dividers = reshape(dividers,
(numphases - 1, numspecies))
#Initialize arrays xij and nvalsij,
#where i in 1..numphases, j in 1..numspecies
#xij is mole fraction of j in phase i.
#nvals is mole numbers of j in phase i.
#x = zeros(TYPE,numphases, numspecies)
#nvals = zeros(TYPE,numphases, numspecies)
#Calculate partition of species into phases
partition!(dividers,n,x,nvals)
#Calculate Overall Gibbs Free Energy (J)
#If any errors are encountered, return a big number, ensuring point is discarded
#by DE Algorithm
G = _0
for i ∈ 1:numphases
xi = @view(nvals[i, :])
gi,vi = __eval_G_DETPFlash(model,p,T,xi,equilibrium)
vcache[i] = vi
G += gi
#calling with PTn calls the internal volume solver
#if it returns an error, is a bug in our part.
end
if logspace
dividers .= log.(dividers)
end
R̄ = Rgas(model)
return ifelse(isnan(G),bignum,G/R̄/T)
end
#indirection to allow overloading this evaluation in activity models
function __eval_G_DETPFlash(model::EoSModel,p,T,xi,equilibrium)
phase = is_lle(equilibrium) ? :liquid : :unknown
vi = volume(model,p,T,xi;phase = phase)
g = VT_gibbs_free_energy(model, vi, T, xi)
return g,vi
end
numphases(method::DETPFlash) = method.numphases
export DETPFlash