-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathSAFTVRSMie.jl
487 lines (434 loc) · 15.5 KB
/
SAFTVRSMie.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#TODO: find a better name
struct SAFTVRSMieParam <: EoSParam
Mw::SingleParam{Float64}
segment::SingleParam{Float64}
sigma::PairParam{Float64}
lambda_a::PairParam{Float64}
lambda_r::PairParam{Float64}
epsilon::PairParam{Float64}
end
abstract type SAFTVRSMieModel <: SAFTModel end
@newmodel SAFTVRSMie SAFTVRSMieModel SAFTVRSMieParam
default_references(::Type{SAFTVRSMie}) = ["TODO"]
default_locations(::Type{SAFTVRSMie}) = ["SAFT/SAFTVRMie", "properties/molarmass.csv"]
"""
SAFTVRSMieModel <: SAFTModel
SAFTVRSMie(components;
idealmodel = BasicIdeal,
userlocations = String[],
ideal_userlocations = String[],
reference_state = nothing,
verbose = false,
assoc_options = AssocOptions())
## Input parameters
- `Mw`: Single Parameter (`Float64`) - Molecular Weight `[g/mol]`
- `segment`: Single Parameter (`Float64`) - Number of segments (no units)
- `sigma`: Single Parameter (`Float64`) - Segment Diameter [`A°`]
- `epsilon`: Single Parameter (`Float64`) - Reduced dispersion energy `[K]`
- `lambda_a`: Pair Parameter (`Float64`) - Atractive range parameter (no units)
- `lambda_r`: Pair Parameter (`Float64`) - Repulsive range parameter (no units)
- `k`: Pair Parameter (`Float64`) (optional) - Binary Interaction Paramater (no units)
- `epsilon_assoc`: Association Parameter (`Float64`) - Reduced association energy `[K]`
- `bondvol`: Association Parameter (`Float64`) - Association Volume
## Model Parameters
- `Mw`: Single Parameter (`Float64`) - Molecular Weight `[g/mol]`
- `segment`: Single Parameter (`Float64`) - Number of segments (no units)
- `sigma`: Pair Parameter (`Float64`) - Mixed segment Diameter `[m]`
- `lambda_a`: Pair Parameter (`Float64`) - Atractive range parameter (no units)
- `lambda_r`: Pair Parameter (`Float64`) - Repulsive range parameter (no units)
- `epsilon`: Pair Parameter (`Float64`) - Mixed reduced dispersion energy`[K]`
- `epsilon_assoc`: Association Parameter (`Float64`) - Reduced association energy `[K]`
- `bondvol`: Association Parameter (`Float64`) - Association Volume
## Input models
- `idealmodel`: Ideal Model
## Description
SAFT-VR with Mie potential for the solid phase using WCA perturbation theory.
## References
1. Jalani, Y., Ramrattana, N., Walker, P.J., Riedemann, A., Galindo, A., Mater, O. K., & Müller, E. A. (2024). SAFT-VR Mie Equation of State for the Solid and Fluid Phases. (in preparation)
"""
SAFTVRSMie
export SAFTVRSMie
function transform_params(::Type{SAFTVRSMie},params)
sigma = params["sigma"]
sigma.values .*= 1E-10
sigma = sigma_LorentzBerthelot(sigma)
epsilon = epsilon_HudsenMcCoubrey(params["epsilon"], sigma)
lambda_a = lambda_LorentzBerthelot(params["lambda_a"])
lambda_r = lambda_LorentzBerthelot(params["lambda_r"])
params["sigma"] = sigma
params["epsilon"] = epsilon
params["lambda_a"] = lambda_a
params["lambda_r"] = lambda_r
return params
end
is_solid(model::SAFTVRSMieModel) = true
function a_res(model::SAFTVRSMieModel,V,T,z)
_data = @f(data)
return @f(a_mono,_data) + @f(a_chain,_data)
end
function ζ3(model::SAFTVRSMieModel, V, T, z,_d=@f(d),m̄ = dot(z,model.params.segment.values))
m = model.params.segment
ζ3 = zero(V+T+first(z)+one(eltype(model)))
for i ∈ 1:length(z)
di =_d[i]
xS = z[i]*m[i]/m̄
ζ3 += xS*di*di*di
end
c = π/6*N_A*m̄/V
ζ3 = c*ζ3
return ζ3
end
function data(model::SAFTVRSMieModel,V,T,z)
∑z = sum(z)
m̄ = dot(model.params.segment.values,z)
_d = d(model,V,T,z)
η = ζ3(model,V,T,z,_d,m̄)
ρS = m̄*N_A/V #is this ok?
ηc = 0.740480489693061
d̄ = dot(z,_d)/sum(z)
ρ0 = 6*ηc/(π*d̄*d̄*d̄)
γ = 4*(1 - ρS/ρ0)
α = ρ0/ρS - 1
Z = Zhs_hall(γ,α)
J̄ = J(model,V,T,z,_d,η,Z)
return m̄,_d,η,ρS,ρ0,Z,J̄
end
function a_mono(model::SAFTVRSMieModel,V,T,z,_data = @f(data))
m̄,d,η,ρS,ρ0,Z,J̄ = _data
ahs = @f(a_hs,_data)
a1 = @f(a_1,_data)
return m̄*(ahs + a1)/sum(z)
end
function a_hs(model::SAFTVRSMieModel,V,T,z,_data = @f(data))
m̄,d,η,ρS,ρ0,Z,J̄ = _data
ρ0ρs = ρ0/ρS
γ = 4*(1 - ρS/ρ0)
α = ρ0ρs - 1
S₀ = -0.24 #± 0.04
res = -S₀ + 1 + log(ρ0ρs) - 3*log(2*α/3)
#=
#Zhs(γ) - Zref = evalpoly(γ,(-0.442304,0.1253077,0.1762393,-1.053308,2.818621,-2.921934,1.118413))
#integral(0,γ,evalpoly(γ,pol)/(γ - 4)) = integral(polynomial part) + integral(fractional part)
#evalpoly(γ,pol)/(γ - 4) =
1.11841*x^5 + 1.55172*x^4 + 9.02549*x^3 + 35.0487*x^2 + 140.371*x + 561.609 + 2245.99/(x - 4)
(wolfram alpha)
p_int = (561.609,140.371,35.0487,9.02549,1.55172,1.11841)
= evalpoly(x,p_int) + 2245.99/(x - 4)
=#
p_int = (2.557696-3,0.1253077,0.1762393,-1.053308,2.818621,-2.921934,1.11841)
∫Z = zero(V+T+first(z))
∫Z += (log(1-γ/4))*p_int[1]
∫Z += (γ+4*log(1-γ/4))*p_int[2]
∫Z += (γ^2/2+4*γ+16*log(1-γ/4))*p_int[3]
∫Z += (γ^3/3+2*γ^2+16*γ+64*log(1-γ/4))*p_int[4]
∫Z += (γ^4/4+4*γ^3/3+8*γ^2+64*γ+256*log(1-γ/4))*p_int[5]
∫Z += (γ^5/5+γ^4+16*γ^3/3+32*γ^2+256*γ+1024*log(1-γ/4))*p_int[6]
∫Z += (γ^6/6+4*γ^5/5+4*γ^4+64*γ^3/3+128*γ^2+1024*γ+4096*log(1-γ/4))*p_int[7]
return res + ∫Z
end
function Zhs_hall(γ,α) #eq 5
return 3/α + evalpoly(γ,(2.557696,0.1253077,0.1762393,-1.053308,2.818621,-2.921934,1.118413))
end
function g_hs(model::SAFTVRSMieModel,η,d,r,J,r₁d = r1_d(η),k₁ = K1(model,η),k₂ = K2(model,η),k = K(model,η)) #eq 11
g_hs₁ = g_hs_1(model,η,d,r,J,r₁d,k₁,k₂)
g_hsᵢ = g_hs_i(model,η,d,r,k)
return g_hs₁ + g_hsᵢ
end
function g_hs_fdf(model::SAFTVRSMieModel,V,T,z,d,r,i::Int) #eq 11, used in the context of the evaluation of d
mᵢ = model.params.segment.values[i]
η = (π/6*N_A*mᵢ*z[i]/V)*d*d*d
ηc = 0.740480489693061
ρs = z[i]*mᵢ*N_A/V #is this ok?
ρ0 = 6*ηc/(π*d*d*d)
γ = 4*(1 - ρs/ρ0)
α = ρ0/ρs - 1
Z = Zhs_hall(γ,α)
r₁d = r1_d(η)
k₁ = K1(model,η)
k₂ = K2(model,η)
k = K(model,η)
J = g_hs_Ji(model,d,η,Z,k₁,k₂,r₁d,k)
g_hs₁,∂g_hs₁ = g_hs_1_fdf(model,η,d,r,J,r₁d,k₁,k₂)
g_hsᵢ,∂g_hsᵢ = g_hs_i_fdf(model,η,d,r,k)
# @show Z
# @show k₁,k₂,k
# @show J
# @show g_hs₁,∂g_hs₁
# @show g_hsᵢ,∂g_hsᵢ
return g_hs₁ + g_hsᵢ, ∂g_hs₁ + ∂g_hsᵢ
end
#eq 12
function g_hs_1(model::SAFTVRSMieModel,η,d,r,J,r1d = r1_d(η),k₁ = K1(model,η),k₂ = K2(model,η))
rd = r/d
_k12 = -(k₁*(rd-r1d))^2
_k24 = -(k₂*(rd-r1d))^4
(J*d/r)*exp(_k12 + _k24)
end
#eq 12 + derivative, used in calculation of d
function g_hs_1_fdf(model::SAFTVRSMieModel,η,d,r,J,r1d = r1_d(η),k₁ = K1(model,η),k₂ = K2(model,η))
rd = r/d
dr = d/r
δr = (rd-r1d)
_k12 = -(k₁*δr)^2
_k24 = -(k₂*δr)^4
_exp = exp(_k12+_k24)
g = (J*d/r)*_exp
∂g = -g*dr*(dr+4*k₂^4*δr^3+2*k₁^2*δr)
return g,∂g
end
function g_hs_i(model::SAFTVRSMieModel,η,d,r,k = K(model::SAFTVRSMieModel,η)) #eq 13
n = SAFTVRSMieConsts.r_fcc::Vector{Int}
g = zero(η+d+r+k)
rd = r/d
dr = d/r
v₀ = π*d^3/(6*η)
d₀ = cbrt(sqrt(2)*v₀)
for rᵢd₀2 in 2:length(n) #(rᵢ/d₀)^2
nᵢ = n[rᵢd₀2]
nᵢ != 0 && begin
rᵢ = sqrt(rᵢd₀2)*d₀
δr = rd - rᵢ/d
_expᵢ = exp(-(k*δr)^2)
C = (d/rᵢ)*k*nᵢ/(sqrt(π)*24*η)
g += dr*C*_expᵢ
end
end
return g
end
function g_hs_i_fdf(model::SAFTVRSMieModel,η,d,r,k = K(model::SAFTVRSMieModel,η)) #eq 13
n = SAFTVRSMieConsts.r_fcc::Vector{Int}
g = zero(η+d+r+k)
∂g = zero(g)
rd = r/d
dr = d/r
v₀ = π*d^3/(6*η)
d₀ = cbrt(sqrt(2)*v₀)
for rᵢd₀2 in 2:length(n) #(rᵢ/d₀)^2
nᵢ = n[rᵢd₀2]
nᵢ != 0 && begin
rᵢ = sqrt(rᵢd₀2)*d₀
δr = rd - rᵢ/d
_expᵢ = exp(-(k*δr)^2)
C = (d/rᵢ)*k*nᵢ/(sqrt(π)*24*η) #independent of d/r
g += dr*C*_expᵢ
∂g += -g*(dr + 2*k*k*δr)*dr
end
end
return g,∂g
end
function r1_d(η) #SA, eq 1
ηc = 0.740480489693061
η✷ = ηc - η
num = evalpoly(η✷,(1.0,-8.0521,18.003))
denom = evalpoly(η✷,(1.0,-8.2973,20.546,-13.828,103.95,-582.74,1245.7))
return num/denom
end
function J(model::SAFTVRSMieModel,V,T,z,_d = @f(d),η = @f(ζ3,_d),Z = @f(Zhs_hall))
#=
g_hs(1,η) = (z-1)/(4*η)
g_hs_1(1,η) + g_hs_i(1,η) = (z-1)/(4*η)
g_hs_1(1,η) = (z-1)/(4*η) - g_hs_i(1,η)
J*ghs_1_divJ(1,η) = (z-1)/(4*η) - g_hs_i(1,η)
J =
=#
J̄ = fill(zero(V+T+first(z)+one(eltype(model))),length(model))
for i in @comps
r1d = r1_d(η)
k₁ = K1(model,η)
k₂ = K2(model,η)
k = K(model,η)
J̄[i] = g_hs_Ji(model,_d[i],η,Z,k₁,k₂,r1d,k)
end
return J̄
end
#specialization for single component, one less allocation
function J(model::SAFTVRSMieModel,V,T,z::SingleComp,_d = @f(d),η = @f(ζ3,_d),Z = @f(Zhs_hall))
r1d = r1_d(η)
k₁ = K1(model,η)
k₂ = K2(model,η)
k = K(model,η)
return SA[g_hs_Ji(model,_d[1],η,Z,k₁,k₂,r1d,k)]
end
function g_hs_Ji(model::SAFTVRSMieModel,di,η,Z,k₁,k₂,r1d,k)
ghs_at_1 = g_hs_i(model,η,di,di,k)
_k12 = -(k₁*(1-r1d))^2
_k24 = -(k₂*(1-r1d))^4
ghs_1_divJ = exp(_k12+_k24)
# @show ghs_at_1,ghs_1_divJ
return ((Z-1)/(4*η) - ghs_at_1)/ghs_1_divJ
end
function K1(model::SAFTVRSMieModel,η) #eq 15
ηc = 0.740480489693061
η✷ = ηc - η
return 1.5338/η✷ - 0.37687*exp(-989.6*(η - 0.52)^2) + evalpoly(η✷,(-2.5146,-1.3574,-8.5038))
end
function K2(model::SAFTVRSMieModel,η) #eq 16
ηc = 0.740480489693061
η✷ = ηc - η
return 0.80313/η✷ - 1.208*exp(5.6128*η✷) + 67.808*η✷*η✷ - 67.918*η✷*η✷*η✷
end
function K(model::SAFTVRSMieModel,η) #eq 17
ηc = 0.740480489693061
η✷ = ηc - η
return 1.9881/η✷ + evalpoly(η✷,(-3.5276,6.9762,-26.205))
end
function ∫ghsW(model::SAFTVRSMieModel,V,T,z,i,j,_data = @f(data),r₁d = r1_d(_data[3]),k₁ = K1(model,_data[3]) ,k₂ = K2(model,_data[3]),k = K(model,_data[3]))
m̄,d,η,ρS,ρ0,Z,J̄ = _data
m̄inv = 1/m̄
m = model.params.segment.values
σ = model.params.sigma.values
ϵ = model.params.epsilon.values
σᵢⱼ = σ[i,j]
ϵ̄ = ϵ[i,j]/T
λa = model.params.lambda_a.values
λr = model.params.lambda_r.values
ρSi = z[i]*m[i]*N_A/V
ρSj = z[j]*m[j]*N_A/V
dSi = cbrt(1/ρSi)
dSj = cbrt(1/ρSj)
dSij = 0.5*(dSi + dSj)
ρSᵢⱼ = dSij^-3 #TODO: look up correct mixing rule
λ = cbrt(sqrt(2)/ρSᵢⱼ)*one(T)
λ̄ = λ/σ[i,j]
dᵢ = d[i]/σ[i,i]
dⱼ = d[j]/σ[j,j]
dᵢⱼ = 0.5*(dᵢ + dⱼ)
λaᵢⱼ = λa[i,j]
λrᵢⱼ = λr[i,j]
Cᵢⱼ = Cλ_mie(λaᵢⱼ, λrᵢⱼ)
u(r) = Cᵢⱼ*ϵ̄*(r^-λrᵢⱼ -r^-λaᵢⱼ)
du(r) = -Cᵢⱼ*ϵ̄*(λrᵢⱼ*r^-(λrᵢⱼ+1) -λaᵢⱼ*r^-(λaᵢⱼ+1))
uλ = u(λ̄)
duλ = du(λ̄)
W(r) = if (r >= λ̄) u(r) else (uλ - duλ*(λ̄ - r)) end
J̄ᵢⱼ = if i == j
J̄[i]
else
one(J̄[i])*g_hs_Ji(model,dᵢⱼ,η,Z,k₁,k₂,r₁d,k)
end
ghsWr(r) = g_hs(model,η,dᵢⱼ*σᵢⱼ,r*σᵢⱼ,J̄ᵢⱼ,r₁d,k₁,k₂,k)*r*r*W(r)
Wr(r) = r*r*W(r)
#we separate the integration between [d,3.3d] and [3.3d,∞]
#the second part can be solved more efficiently. TODO: actually do that.
∫ = Solvers.integral64(ghsWr,dᵢⱼ,3.3*dᵢⱼ)*σᵢⱼ^3
∫ += Solvers.integral64(Wr,3.3dᵢⱼ,10*dᵢⱼ)*σᵢⱼ^3
return ∫
end
function a_1(model::SAFTVRSMieModel,V,T,z,_data = @f(data))
m̄,d,η,ρS,ρ0,Z,J̄ = _data
m̄inv = 1/m̄
m = model.params.segment.values
σ = model.params.sigma.values
λa = model.params.lambda_a.values
λr = model.params.lambda_r.values
ϵ = model.params.epsilon.values
a₁ = zero(V+T+first(z)+one(eltype(model)))
r₁d = r1_d(η)
k₁ = K1(model,η)
k₂ = K2(model,η)
k = K(model,η)
for i ∈ @comps
xsᵢ= z[i]*m[i]*m̄inv
a₁ += xsᵢ*xsᵢ*@f(∫ghsW,i,i,_data,r₁d,k₁,k₂,k)
for j ∈ 1:(i-1)
xsⱼ = z[i]*m[i]*m̄inv
dᵢⱼ = 0.5*(dᵢᵢ+d[j])
a₁ᵢⱼ = @f(∫ghsW,i,j,_data,r₁d,k₁,k₂,k)
a₁ += 2*a₁ᵢⱼ*xsᵢ*xsⱼ
end
end
return 2*π*ρS*a₁
end
function a_chain(model::SAFTVRSMieModel,V,T,z,_data = @f(data))
m̄,d,η,ρS,ρ0,Z,J̄ = _data
β = 1/T #our epsilon is already divided by kᵦ
σ = model.params.sigma
λa = model.params.lambda_a
λr = model.params.lambda_r
ϵ = model.params.epsilon
achain = zero(V+T+first(z)+one(eltype(model)))
m = model.params.segment.values
# eq 8, using linear mixing (from SAFTVRMie)
λ = cbrt(sqrt(2)/ρS)*one(T)
for i in 1:length(model)
σᵢ,λaᵢ,λrᵢ,ϵᵢ,dᵢ = σ[i],λa[i],λr[i],ϵ[i],d[i]
Cᵢ = Cλ_mie(λaᵢ, λrᵢ)
λ̄ = λ/σᵢ
ϵ̄ = β*ϵᵢ
uλ = Cᵢ*ϵ̄*(λ̄^-λrᵢ -λ̄^-λaᵢ)
duλ = -Cᵢ*ϵ̄*(λrᵢ*λ̄^-(λrᵢ+1) -λaᵢ*λ̄^-(λaᵢ+1))
g_hsᵢ = g_hs(model,η,dᵢ,σᵢ,J̄[i])
βV₀ᵢ = - uλ + duλ*(λ̄ - 1)
y_hsᵢ = g_hsᵢ
g_Mieᵢ = y_hsᵢ*exp(-βV₀ᵢ)
achain -= z[i]*(log(g_Mieᵢ)*(m[i] - 1))
end
return achain/sum(z)
end
function d(model::SAFTVRSMieModel,V,T,z)
n = length(z)
_d = fill(zero(V+T+first(z)+one(eltype(model))),n)
for k ∈ 1:n
_d[k] = d_vrs(model,V,T,z,k)
end
return _d
end
function d(model::SAFTVRSMieModel,V,T,z::SingleComp)
return SA[d_vrs(model::SAFTVRSMieModel,V,T,z,1)]
end
#TODO: this is a sketch
function d_vrs(model::SAFTVRSMieModel,V,T,z,i::Int)
_0 = zero(T+first(z))
mᵢ = model.params.segment.values[i]
ρS = z[i]*mᵢ*N_A/V
λ = cbrt(sqrt(2)/ρS)*one(T)
σᵢ = model.params.sigma.values[i,i]
λ̄ = λ/σᵢ
λa,λr = model.params.lambda_a[i],model.params.lambda_r[i]
Cᵢ = Cλ_mie(λa, λr)
β = 1/T
ϵ = model.params.epsilon[i]
ϵ̄ = ϵ/T
u(r) = Cᵢ*ϵ̄*(r^-λr -r^-λa)
du(r) = -Cᵢ*ϵ̄*(λr*r^-(λr+1) -λa*r^-(λa+1))
function V₀(r)
if r > λ̄
return zero(r)
else
uλ = u(λ̄)
duλ = du(λ̄)
#du/dr at r = λ
return u(r) - uλ + duλ*(λ̄ - r)
end
end
function dV₀(r)
if r > λ̄
return zero(r)
else
duλ = du(λ̄)
return du(r) - duλ
end
end
dB_f(r) = -expm1(-V₀(r))
dB = Solvers.integral64(dB_f,_0,λ̄)
# dB *= σᵢ
#TODO: derivate this
δ_f(r) = -dV₀(r)*exp(-V₀(r))*(r/dB -1)^2
δ = Solvers.integral64(δ_f,_0,λ̄)
#iteration 0: d = dB
d = dB
d0 = one(d)
function f0(dj)
g_hs,∂g_hs = g_hs_fdf(model,V,T,z,dj*σᵢ,dj*σᵢ,i)
σ₀ = g_hs
σ₁ = 2*σ₀ + ∂g_hs
return dB*(1 + δ*σ₁/(2*σ₀))
end
return Solvers.fixpoint(f0,d0)*σᵢ
end
#SA, Table 1
#note: idx = [14,30,46,56,62] are missing.
#for purposes of wiping out an MVE, those values are replaced with 1
SAFTVRSMieConsts = (;
r_fcc = [12, 6, 24, 12, 24, 8, 48, 6, 36, 24, 24, 24, 72, 0, 48, 12, 48, 30, 72, 24, 48, 24, 48, 8, 84, 24, 96, 48, 24, 0, 96, 6, 96, 48, 48, 36, 120, 24, 48, 24, 48, 48, 120, 24, 120, 0, 96, 24, 108, 30, 48, 72, 72, 32, 144, 0, 96, 72, 72, 48, 120, 0, 144, 12, 48],
)