-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMakefile
9641 lines (8653 loc) · 311 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
SHELL=/bin/bash -O expand_aliases
# DATA_PATH=/Users/qualia/Code/infomercial/data
DATA_PATH=/Volumes/Data/infomercial/data
# DATA_PATH=/home/stitch/Code/infomercial/data/
# ----------------------------------------------------------------------------
# 3-28-2019
#
# Testing the CL with a short one hot bandit exp
exp1:
parallel -j 1 -v \
--joblog '$(DATA_PATH)/exp1.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name BanditOneHot2-v0 --num_episodes=10 --tie_break='next' --tie_threshold=1e-8 --lr=.1 --save=$(DATA_PATH)/exp1_{1}.pkl --interactive=False --debug=True --master_seed={1}' ::: 1 2
# As a first real exp, run several bandits with the same parameters
# drawn from some hand tuning. See where were at, overall.
# Tuning done in `exp_meta_bandit.ipynb`. Not explicitly doc'ed.
#
# lr = .1; epsilon = 1e-8
# N_trials = 10000; M_exps = 50
# RESULTS:
# - One hot solved easily. Skipping these in future exps.
# - One high was solved with p_best=1, or near to that, but the solutions
# were not as fast or stable as some of my hand-tuned runs w/ different lr.
# - Sparse was never solved to p_best=1. 2 arm came close.
# Others were at chance.
exp2:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp2.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-8 --lr=.1 --save=$(DATA_PATH)/exp2_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHot2-v0 BanditOneHot10-v0 BanditOneHot121-v0 BanditOneHot1000-v0 BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# ----------------------------------------------------------------------------
# 3-29-2019
# Try some parameter variations starting based on exp2, which was about 2/3 of
# the way there in terms of solving all the bandits.
# Lesser lr improves sparse, but destroys performance on one high. Gain on sparse are not really great.
# Lesser threshold also hamrd one high. Does improve sparse.
# SUM: high lr good. play with theshold more....
# - See notebooks/exp21-8_analysis.ipynb for full analysis
# - as well as individual notebooks/exp2_analysis.ipynb
# notebooks/exp3_analysis.ipynb
# and so on
# lr = 0.01
exp3:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp3.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-8 --lr=.01 --save=$(DATA_PATH)/exp3_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = 0.001
exp4:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp4.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-8 --lr=0.001 --save=$(DATA_PATH)/exp4_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = 0.000001
exp5:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp5.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-8 --lr=0.000001 --save=$(DATA_PATH)/exp5_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# tie_threshold = 1e-9
exp6:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp6.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-9 --lr=.1 --save=$(DATA_PATH)/exp6_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr=0.01, tie_threshold = 1e-9
exp7:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp7.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-9 --lr=.01 --save=$(DATA_PATH)/exp7_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr=0.000001, tie_threshold = 1e-9
exp8:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp8.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-9 --lr=0.000001 --save=$(DATA_PATH)/exp8_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# ----------------------------------------------------------------------------
# 3-31-2019
# Quest for on true parameter set continues....
# After exp3-8, trying high lr with more-ahem-exploration of the tie_threshold.
# lr = .1; tie_threshold = 1e-9
# - See notebooks/exp9_analysis.ipynb for full analysis
exp9:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp9.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-9 --lr=0.1 --save=$(DATA_PATH)/exp9_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .1; tie_threshold = 1e-10
#
# SUM: exp9-10 decreasing threshold not helpful w/ lr = 1. I expected the opposite.
# - See notebooks/exp10_analysis.ipynb for full analysis
exp10:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp10.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-10 --lr=0.1 --save=$(DATA_PATH)/exp10_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .2; tie_threshold = 1e-8
#
# SUM: OneHigh121 shows an approach to 1, that a large LOSS in p_best with learning. First time I've seen a loss. Don't really understand how that can be!
# - See notebooks/exp11_analysis.ipynb for full analysis
exp11:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp11.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-8 --lr=0.2 --save=$(DATA_PATH)/exp11_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .2; tie_threshold = 1e-9
#
# 121 again shows a loss (see exp11) however it is MUCH more severe here.
# - See notebooks/exp12_analysis.ipynb for full analysis
exp12:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp12.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-9 --lr=0.2 --save=$(DATA_PATH)/exp12_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .2; tie_threshold = 1e-10
#
# SUM: loss on 121 again. No improvement otherwise.
# lr = 0.2 is just too high?
# - See notebooks/exp13_analysis.ipynb for full analysis
exp13:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp13.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-10 --lr=0.2 --save=$(DATA_PATH)/exp13_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .1; tie_threshold = 1e-6
#
# SUM: oneHigh all solved. thresh was too low! No sparse solved.
#
# - Maybe should I start thinking about the lr/thresh ratio.
# Exploring that way?
# - See notebooks/exp14_analysis.ipynb for full analysis
exp14:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp14.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-6 --lr=0.1 --save=$(DATA_PATH)/exp14_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .1; tie_threshold = 1e-4
#
# SUM: OneHigh NEARLY solved VERY fast. Back to near linear answers for this task! Some instability. Do a run w/ tie_threshold = 1e-3.
#
# Sparse still looking quite poor; In single trials I was nailing these...
# not sure what I was doing different.
#
# - The dist around p_best is consistent enough that single trials are a
# reasonable path to faster tuning. Esp for Sparse.
#
# - See notebooks/exp15_analysis.ipynb for full analysis
exp15:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp15.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-4 --lr=0.1 --save=$(DATA_PATH)/exp15_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# ----------------------------------------------------------------------------
# 4-1-2019
# lr = .1; tie_threshold = 1e-3
#
# SUM: On Onehigh instability over last few thousand trials increased
# compared to exp15. I was hoping for the opposite. Try 1e-5 next.
# Sparse still poorly.
# - See notebooks/exp16_analysis.ipynb for full analysis
exp16:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp16.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-3 --lr=0.1 --save=$(DATA_PATH)/exp16_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .1; tie_threshold = 1e-5
#
# SUM: For oneHigh, performance improved compared to exp16. 1000 still not quit perfect but its p_best > 0.95. OneHigh2,10,121 all quickly converged.
# Sparse still poorly. ...Keep this thresh? Try a very low lr? (low lr worked
# well in hand tuning, IIRC).
# - See notebooks/exp17_analysis.ipynb for full analysis
exp17:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp17.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-5 --lr=0.1 --save=$(DATA_PATH)/exp17_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# lr = .000001; tie_threshold = 1e-5
#
# SUM: oneHigh2,10,121 quickly find p_best. oneHigh1000 never converged
# Sparse2 converged. Sparse10 p_best=0.8 or so. 121 and 1000 are at chance.
# Confused. Re-visit tuning runs. What is happening? Why are sparse solns poss.
# in these exps. What did I do diff?
#
# Overall, tie_threshold seems to be more critical that lr is....
# Will need to do a full sensitivity test.
#
# Should also plot p_best for all bandits/exp so far....
#
# - See notebooks/exp18_analysis.ipynb for full analysis
exp18:
parallel -j 40 -v \
--joblog '$(DATA_PATH)/exp18.log' \
--nice 19 --delay 2 --colsep ',' \
'meta_bandit.py --env_name {2} --num_episodes=10000 --tie_break='next' --tie_threshold=1e-5 --lr=0.000001 --save=$(DATA_PATH)/exp18_{2}_{1}.pkl --interactive=False --master_seed={1}' ::: {1..50} ::: BanditOneHigh2-v0 BanditOneHigh10-v0 BanditOneHigh121-v0 BanditOneHigh1000-v0 BanditHardAndSparse2-v0 BanditHardAndSparse10-v0 BanditHardAndSparse121-v0 BanditHardAndSparse1000-v0
# ---------------------------------------------------------------------------
# 4-2-2019
# Testing the CL for epsilon_bandit.py
exp19:
parallel -j 1 -v \
--joblog '$(DATA_PATH)/exp19.log' \
--nice 19 --delay 2 --colsep ',' \
'epsilon_bandit.py --env_name BanditOneHigh2-v0 --num_episodes=10 --epsilon=0.1 --epsilon_decay_tau=0.001 --lr=.1 --save=$(DATA_PATH)/exp19_{1}.pkl --interactive=False --debug=True --master_seed={1}' ::: 1 2
# Testing the CL for beta_bandit.py
exp20:
parallel -j 1 -v \
--joblog '$(DATA_PATH)/exp20.log' \
--nice 19 --delay 2 --colsep ',' \
'beta_bandit.py --env_name BanditOneHigh2-v0 --num_episodes=10 --beta=1.0 --tie_break='next' --tie_threshold=1e-8 --lr=.1 --save=$(DATA_PATH)/exp20_{1}.pkl --interactive=False --debug=True --master_seed={1}' ::: 1 2
# ---------------------------------------------------------------------------
# 4-5-2019
# Tune epsilon_bandit: a quick test run
exp21:
-rm -rf $(DATA_PATH)/exp21/*
tune_bandit.py $(DATA_PATH)/exp21 \
--exp_name='epsilon_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_episodes=10 \
--num_samples=10 \
--training_iteration=20 \
--perturbation_interval=2 \
--epsilon='(.01, .99)' \
--epsilon_decay_tau='(0.0001, 0.1)' \
--lr='(1e-6, 1e-1)'
# Tune epsilon_bandit: first real try
# SUM: converged on having essentially no exploration.
# 'epsilon': 0.013352806530529619,
# 'epsilon_decay_tau': 0.08101846019197038,
# 'lr': 0.004639344318990854,
# 'total_R': 583.0
# It never find the best arm as a result.
#
# - See notebooks/exp21_analysis.ipynb for full analysis
# I'm not sure if that's a problem with the method or
# the code. To try and diagnos going to run a
# the other exps to see anything sensible happens.
# Note: to save space I deleted the detailed run data in exp22/*
# kept only exp22_best.pkl and exp22_sorted.pkl
#
# - See notebooks/exp22_analysis.ipynb for full analysis
exp22:
-rm -rf $(DATA_PATH)/exp22/*
tune_bandit.py $(DATA_PATH)/exp22 \
--exp_name='epsilon_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=120 \
--training_iteration=100 \
--perturbation_interval=1 \
--epsilon='(.01, .99)' \
--epsilon_decay_tau='(0.0001, 0.1)' \
--lr='(1e-6, 1e-1)'
# ---------------------------------------------------------------------------
# 4-8-2019
# c37259fc6ba12e2ca8f49da1457218664a8b36ff
# First real opt for meta
# SUM: after running for 2 days this never converged. No sure why? PBT config?
# Model problems?
#
# - See notebooks/exp23_analysis.ipynb for full analysis
#
# NEXT: maoving to a simple random search, just go make some quick progress in
# studing the alt models. Will revist PBT later...
exp23:
-rm -rf $(DATA_PATH)/exp23/*
tune_bandit.py $(DATA_PATH)/exp23 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=120 \
--training_iteration=100 \
--perturbation_interval=1 \
--tie_threshold='(1e-1, .1e-10)' \
--lr='(1e-1, 1e-6)'
# First real opt for beta
exp24:
-rm -rf $(DATA_PATH)/exp24/*
tune_bandit.py $(DATA_PATH)/exp24 \
--exp_name='beta_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=120 \
--training_iteration=100 \
--perturbation_interval=1 \
--beta='(1e-3, 1e1)' \
--lr='(1e-1, 1e-6)'
# ---------------------------------------------------------------------------
# 4-10-2019
# 2890330c3ac7b6e4aa2c58c31bf2860f04876c99
# Branched from master -> random_search.
# Try: Random search for 100 draws, with 3 resamples
#
# Opt beta
# SUM: Best params solved all oneHot/oneHigh. No progress on HardAndSparse
# The top 50 parameters (or 500) all give qbout equal performance on the
# OneHigh tasks.
# Sensitivy was to beta, but it is complex. Very little to lr directly.
# But there is probably a beta/lr interaction, given beta's complex trend,
# but hard to sus it out.
# Far as I can tell between beta: 0.04-0.08 gives the best total_R.
#
# Meant to set beta between 0.1 - 10. Need to rerun this over a wider range.
# The sampling for lr is off too. Hmm....
# exp25:
# -rm -rf $(DATA_PATH)/exp25/*
# tune_bandit.py $(DATA_PATH)/exp25 \
# --exp_name='beta_bandit' \
# --env_name=BanditOneHigh1000-v0 \
# --num_episodes=3000 \
# --num_samples=500 \
# --beta='(0.001, 2)' \
# --lr='(0.001, 0.2)'
# # opt meta
# exp26:
# -rm -rf $(DATA_PATH)/exp26/*
# tune_bandit.py $(DATA_PATH)/exp26 \
# --exp_name='meta_bandit' \
# --env_name=BanditOneHigh1000-v0 \
# --num_episodes=3000 \
# --num_samples=500 \
# --verbose=True \
# --tie_threshold='(1e-8, 0.1)' \
# --lr='(0.001, 0.2)'
# # opt epsilon
# exp27:
# -rm -rf $(DATA_PATH)/exp27/*
# tune_bandit.py $(DATA_PATH)/exp27 \
# --exp_name='epsilon_bandit' \
# --env_name=BanditOneHigh1000-v0 \
# --num_episodes=3000 \
# --num_samples=500 \
# --epsilon='(0.01, 0.99)' \
# --epsilon_decay_tau='(0.0001, 0.01)' \
# --lr='(0.001, 0.2)'
# ---------------------------------------------------------------------------
# 4-15-2019
# e929bc945e9bc55ae4b751c9a3b9d81062758a36
# Re-ran exp25-7 using a random search method that actually searches the asked
# for parameter ranges. `ray` has a big bug that limits my ability to actually
# search params....
#
# SUM: only meta converged on the best. the other two were mess. this is at odds
# with the prior runs at exp25-7 with ray and PBT (even given the bug on search
# range). Clearly random search either needs many more samples or I need to
# move to a smarter tuning system.
# Next: As a quick test, to keep things going, am re-run beta and epsilon w/ 5 times the samples overnight.
# opt beta
# - See notebooks/exp25_analysis.ipynb for full analysis
exp25:
-rm -rf $(DATA_PATH)/exp25/*
tune_bandit.py random $(DATA_PATH)/exp25 \
--exp_name='beta_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=500 \
--num_processes=40 \
--beta='(0.001, 2)' \
--lr='(0.001, 0.2)'
# opt meta
# - See notebooks/exp26_analysis.ipynb for full analysis
exp26:
-rm -rf $(DATA_PATH)/exp26/*
tune_bandit.py random $(DATA_PATH)/exp26 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# opt epsilon
# - See notebooks/exp27_analysis.ipynb for full analysis
exp27:
-rm -rf $(DATA_PATH)/exp27/*
tune_bandit.py random $(DATA_PATH)/exp27 \
--exp_name='epsilon_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=500 \
--num_processes=40 \
--epsilon='(0.01, 0.99)' \
--epsilon_decay_tau='(0.0001, 0.01)' \
--lr='(0.001, 0.2)'
# ---------------------------------------------------------------------------
# 4-15-2019
# 5x more samples compared to 25, 27
# 18ebf12316a04bd0a3e76b394ab538475d77b737
# SUM: with a broader HP search, both beta and ep found the best arm.
# beta
# - See notebooks/exp28_analysis.ipynb for full analysis
exp28:
-rm -rf $(DATA_PATH)/exp28/*
tune_bandit.py random $(DATA_PATH)/exp28 \
--exp_name='beta_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--beta='(0.001, 2)' \
--lr='(0.001, 0.2)'
# epsilon
# - See notebooks/exp29_analysis.ipynb for full analysis
exp29:
-rm -rf $(DATA_PATH)/exp29/*
tune_bandit.py random $(DATA_PATH)/exp29 \
--exp_name='epsilon_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--epsilon='(0.01, 0.99)' \
--epsilon_decay_tau='(0.0001, 0.01)' \
--lr='(0.001, 0.2)'
# ---------------------------------------------------------------------------
# 4-16-2019
# 5x more samples compared to 26
# d7ff0eb34e36c2b83cd65d23db2a45ccf39c0e34
# opt meta
# - See notebooks/exp30_analysis.ipynb for full analysis
exp30:
-rm -rf $(DATA_PATH)/exp30/*
tune_bandit.py random $(DATA_PATH)/exp30 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# ---------------------------------------------------------------------------
# 4-16-2019
# Try a few bandits and algs w/ PBT tuning. How does it do overall
# and compared to random search (above)
# opt meta
# BanditOneHigh1000
exp31:
-rm -rf $(DATA_PATH)/exp31/*
tune_bandit.py pbt $(DATA_PATH)/exp31 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh1000-v0 \
--num_iterations=10 \
--top_threshold=0.25 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditOneHigh10
exp32:
-rm -rf $(DATA_PATH)/exp32/*
tune_bandit.py pbt $(DATA_PATH)/exp32 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=10 \
--top_threshold=0.25 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditHardAndSparse2
exp33:
-rm -rf $(DATA_PATH)/exp33/*
tune_bandit.py pbt $(DATA_PATH)/exp33 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse2-v0 \
--num_iterations=10 \
--top_threshold=0.25 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditHardAndSparse10
exp34:
-rm -rf $(DATA_PATH)/exp34/*
tune_bandit.py pbt $(DATA_PATH)/exp34 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse10-v0 \
--num_iterations=10 \
--top_threshold=0.25 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditHardAndSparse121
exp35:
-rm -rf $(DATA_PATH)/exp35/*
tune_bandit.py pbt $(DATA_PATH)/exp35 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse121-v0 \
--num_iterations=10 \
--top_threshold=0.25 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditHardAndSparse1000
exp36:
-rm -rf $(DATA_PATH)/exp36/*
tune_bandit.py pbt $(DATA_PATH)/exp36 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse1000-v0 \
--num_iterations=10 \
--top_threshold=0.25 \
--num_episodes=3000 \
--num_samples=2500 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --------------------------------------------------------------------------
# 4-17-2019
# Based on Harper's [1] work connecting Bayes inference w/ evo game theory I
# developed a hyper opt scheme based on replictor dynamics.
#
# [1]: Harper, Marc. “The Replicator Equation as an Inference Dynamic.”
# ArXiv:0911.1763 [Cs, Math], November 9, 2009. http://arxiv.org/abs/0911.1763.
#
# Let's test it on some hard bandits using my meta_policy.
# BanditHardAndSparse10
# SUM: best params did learn the best arm
# - See notebooks/exp37_analysis.ipynb for full analysis
exp37:
-rm -rf $(DATA_PATH)/exp37/*
tune_bandit.py replicator $(DATA_PATH)/exp37 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse10-v0 \
--num_iterations=10 \
--num_episodes=100 \
--num_replicators=120 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditHardAndSparse121
# SUM: best params did NOT learn the best arm
# - See notebooks/exp38_analysis.ipynb for full analysis
exp38:
-rm -rf $(DATA_PATH)/exp38/*
tune_bandit.py replicator $(DATA_PATH)/exp38 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse121-v0 \
--num_iterations=10 \
--num_episodes=1210 \
--num_replicators=120 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditHardAndSparse1000
# SUM: best params did NOT learn the best arm
# - See notebooks/exp39_analysis.ipynb for full analysis
exp39:
-rm -rf $(DATA_PATH)/exp39/*
tune_bandit.py replicator $(DATA_PATH)/exp39 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse1000-v0 \
--num_iterations=10 \
--num_episodes=10000 \
--num_replicators=120 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --------------------------------------------------------------------------
# 4-17-2019
#
# Repeat exp38 with a much larger pop, BanditHardAndSparse121
# SUM: best params did NOT learn the best arm
# - See notebooks/exp40_analysis.ipynb for full analysis
exp40:
-rm -rf $(DATA_PATH)/exp40/*
tune_bandit.py replicator $(DATA_PATH)/exp40 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse121-v0 \
--num_iterations=10 \
--num_episodes=1210 \
--num_replicators=400 \
--num_processes=40 \
--verbose=True \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --------------------------------------------------------------------------
# 4-18-2019
#
# Tune meta to maximize total_E (not total_R as in the previous experiments)
# BanditHardAndSparse2
# - See notebooks/exp41_analysis.ipynb for full analysis
exp41:
-rm -rf $(DATA_PATH)/exp41/*
tune_bandit.py replicator $(DATA_PATH)/exp41 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse2-v0 \
--num_iterations=10 \
--num_episodes=20 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditHardAndSparse10
# - See notebooks/exp42_analysis.ipynb for full analysis
exp42:
-rm -rf $(DATA_PATH)/exp42/*
tune_bandit.py replicator $(DATA_PATH)/exp42 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse10-v0 \
--num_iterations=10 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditOneHigh2
# - See notebooks/exp43_analysis.ipynb for full analysis
exp43:
-rm -rf $(DATA_PATH)/exp43/*
tune_bandit.py replicator $(DATA_PATH)/exp43 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh2-v0 \
--num_iterations=10 \
--num_episodes=20 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditOneHigh10
# - See notebooks/exp44_analysis.ipynb for full analysis
exp44:
-rm -rf $(DATA_PATH)/exp44/*
tune_bandit.py replicator $(DATA_PATH)/exp44 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=10 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# BanditOneHigh121
# - See notebooks/exp45_analysis.ipynb for full analysis
exp45:
-rm -rf $(DATA_PATH)/exp45/*
tune_bandit.py replicator $(DATA_PATH)/exp45 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh121-v0 \
--num_iterations=10 \
--num_episodes=1210 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --------------------------------------------------------------------------
# 4-18-2019
# Play with num_replicators versus num_iterations (the number of replications)
# in an easy task.
# SUM (exp46-52): all opts found the best arm, generally within the first 20
# episodes.
# - The range of lr was (0.0039834751368258295, .1421784912409777)
# - The range of tie_threshold was (0.005942132325156814, 0.1431450391147704)
# - The range of total_R was (43.0, 88.0)
# - num_iteration < 4 gave the worst result, both in terms of convergence
# speed and total_R
# - num_replicators did not seem to matter; this env may be to easy?
# - See notebooks/exp46-52_analysis.ipynb for full analysis
# NEXT:
# 1. try these w/ metric=total_E just to see if it gives a similiar range of effects.
# 2. try a harder env
# BanditOneHigh10:
# --num_iterations=16; --num_replicators=40
exp46:
-rm -rf $(DATA_PATH)/exp46/*
tune_bandit.py replicator $(DATA_PATH)/exp46 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=16 \
--num_episodes=100 \
--num_replicators=40 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=2; --num_replicators=400
exp47:
-rm -rf $(DATA_PATH)/exp47/*
tune_bandit.py replicator $(DATA_PATH)/exp47 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=2 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=4; --num_replicators=400
exp48:
-rm -rf $(DATA_PATH)/exp48/*
tune_bandit.py replicator $(DATA_PATH)/exp48 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=4 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=8; --num_replicators=400
exp49:
-rm -rf $(DATA_PATH)/exp49/*
tune_bandit.py replicator $(DATA_PATH)/exp49 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=8 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=16; --num_replicators=400
exp50:
-rm -rf $(DATA_PATH)/exp50/*
tune_bandit.py replicator $(DATA_PATH)/exp50 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=16 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=8; --num_replicators=40
exp51:
-rm -rf $(DATA_PATH)/exp51/*
tune_bandit.py replicator $(DATA_PATH)/exp51 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=8 \
--num_episodes=100 \
--num_replicators=40 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=4; --num_replicators=40
exp52:
-rm -rf $(DATA_PATH)/exp52/*
tune_bandit.py replicator $(DATA_PATH)/exp52 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=4 \
--num_episodes=100 \
--num_replicators=40 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# ----------------------------------------------------------------------------
# 4-18-2019
#
# Repeat of exp46-52 BUT with --metric=total_E.
#
# SUM (exp43-59): all opts found the best arm, _always_ within
# the first 20 episodes.
# - The range of lr was (0.0026347871766753592, 0.3318698314514748)
# - The range of tie_threshold was (0.0019689062371460136, 0.07024629597387025)
# - The range of total_R was (73.0, 74.0); the highest total_R was less
# here then in exp46-53.
# - num_iteration had no effect.
# - num_replicators may have had a slight effect. Low N makes it unclear.
# - See notebooks/exp53-59_analysis.ipynb for full analysis
# BanditOneHigh10:
# --num_iterations=16; --num_replicators=40
exp53:
tune_bandit.py replicator $(DATA_PATH)/exp53 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=16 \
--num_episodes=100 \
--num_replicators=40 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=2; --num_replicators=400
exp54:
tune_bandit.py replicator $(DATA_PATH)/exp54 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=2 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=4; --num_replicators=400
exp55:
tune_bandit.py replicator $(DATA_PATH)/exp55 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=4 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=8; --num_replicators=400
exp56:
tune_bandit.py replicator $(DATA_PATH)/exp56 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=8 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=16; --num_replicators=400
exp57:
tune_bandit.py replicator $(DATA_PATH)/exp57 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=16 \
--num_episodes=100 \
--num_replicators=400 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=8; --num_replicators=40
exp58:
tune_bandit.py replicator $(DATA_PATH)/exp58 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=8 \
--num_episodes=100 \
--num_replicators=40 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=4; --num_replicators=40
exp59:
tune_bandit.py replicator $(DATA_PATH)/exp59 \
--exp_name='meta_bandit' \
--env_name=BanditOneHigh10-v0 \
--num_iterations=4 \
--num_episodes=100 \
--num_replicators=40 \
--num_processes=40 \
--metric=total_E \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# ----------------------------------------------------------------------------
# 4-18-2019
#
# Repeat of exp46-52 BUT with MUCH HARDER env, using
# --env_name=BanditHardAndSparse121
# and much 100X bandit size for episode number, meaning
# --num_episodes=12100
# SUM (exp60-66): NO opts searches found the best arm.
# - See notebooks/exp60-66_analysis.ipynb for full analysis
#
# NEXT: 100X didn't seem to help? For eff. returning to 20X
# Try more replicators? I've solved this before, intermittently w/ hand
# tuning...; Try forcing tie_treshold to small value?
# I think that helped before?
# --num_iterations=16; --num_replicators=40
exp60:
tune_bandit.py replicator $(DATA_PATH)/exp60 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse121-v0 \
--num_iterations=16 \
--num_episodes=12100 \
--num_replicators=40 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'
# --num_iterations=2; --num_replicators=400
exp61:
tune_bandit.py replicator $(DATA_PATH)/exp61 \
--exp_name='meta_bandit' \
--env_name=BanditHardAndSparse121-v0 \
--num_iterations=2 \
--num_episodes=12100 \
--num_replicators=400 \
--num_processes=40 \
--tie_threshold='(1e-8, 0.1)' \
--lr='(0.001, 0.2)'