forked from austinwpearce/SoilTestCocaCola
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlp_qp_average.R
273 lines (243 loc) · 9.8 KB
/
lp_qp_average.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#' This experimental function fits two models: a linear- and quadratic-plateau
#' and then simply averages them, without bootstrapping
#' It was designed with soil test correlation data in mind
#' This function can provide results in a table format or as a plot
#' Consider using the soiltestcorr package
#' Author: Austin Pearce
#' Last updated: 2022-10-06
#'
#' @name lp_qp_average
#' @param data a data frame with XY data
#' @param x column for soil test values
#' @param y column for response (e.g. relative yield)
#' @param confint estimate a 95% confidence interval by bootstrap
#' @param boot_R number of bootstrap replicates
#' @param resid choose whether to create residuals plots
#' @param plot choose whether to create correlation plot rather than table
#' @param extrapolate choose whether the fitted line extends to X = 0
#' no effect if plot = FALSE
#' @export
# packages/dependencies needed
library(dplyr) # a suite of packages for wrangling and plotting
library(tidyr) # tidying functions
library(purrr) # map functions
library(rlang) # evaluate column names for STV and RY (tip to AC)
library(nlraa) # for self-starting functions and predicted intervals
library(minpack.lm) # for nlsLM, a robust backup to nls
library(nlstools) # for residuals plots
library(rsample)
library(modelr) # for the r-squared and rmse
library(ggplot2) # plots
# Colors for plot later on
red <- "#CE1141"
gold <- "#EAAA00"
blue <- "#13274F"
black <- "#000000"
# =============================================================================
# supporting functions
# Linear plateau model
# y = if{x <= cx, a + b1x; a + b * cx}
# a = intercept
# b = slope
# cx = critical X value = join point = Critical Soil Test Value (CSTV)
get_plateau_lp <-function(lp_model){
p <- coef(lp_model)[[1]] + coef(lp_model)[[2]] * coef(lp_model)[[3]]
return(round(p, 1))
}
# =============================================================================
lp_qp_average <- function(data = NULL,
x,
y,
weighted = TRUE,
increment = 1,
# confint = FALSE,
# boot_R = 500,
extrapolate = FALSE) {
if (missing(x)) {
stop("Please specify the explanatory variable name (e.g. soil test concentration) using the `x` argument")
}
if (missing(y)) {
stop("Please specify the response variable name (e.g. relative yield) using the `y` argmuent")
}
# Re-define x and y from STV and RY (tip to AC)
x <- rlang::eval_tidy(data = data, rlang::quo({{x}}) )
y <- rlang::eval_tidy(data = data, rlang::quo({{y}}) )
if (max(y) < 2) {
stop("The reponse variable appears to not be on a percentage scale.
If so, please multiply it by 100.")
}
corr_data <- dplyr::tibble(x = as.numeric(x),
y = as.numeric(y))
if (nrow(corr_data) < 4) {
stop("Too few distinct input values to fit LP. Try at least 4.")
}
minx <- min(corr_data$x)
meanx <- mean(corr_data$x)
maxx <- max(corr_data$x)
rangex <- maxx - minx
miny <- min(corr_data$y)
maxy <- max(corr_data$y)
# build the model/fit =====
# starting values (sv)
# even though the functions are selfStarting, providing starting values
# increases the chance the SS functions converge on something reasonable
sv <- list(a = miny, b = 1, cx = meanx)
# even though there is a risk that nlsLM results in a false convergence, this risk is likely low
lp_model <<- try(minpack.lm::nlsLM(y ~ SSlinp(x, a, b, cx),
data = corr_data,
start = sv,
upper = c(a = maxy, b = Inf, cx = 10 * maxx),
lower = c(a = -Inf, b = 0, cx = minx)),
silent = TRUE)
qp_model <<- try(minpack.lm::nlsLM(y ~ SSquadp3xs(x, a, b, cx),
data = corr_data,
start = sv,
upper = c(a = maxy, b = Inf, cx = 10 * maxx),
lower = c(a = -Inf, b = 0, cx = minx)),
silent = TRUE)
if (inherits(lp_model, "try-error") | inherits(qp_model, "try-error")) {
stop("One of the two model could not be fit with nlsLM.
Consider another model.")
}
lp_cstv <- coef(lp_model)[[3]]
qp_cstv <- coef(qp_model)[[3]]
ictab <<- IC_tab(lp_model, qp_model) %>% as_tibble()
if (weighted == TRUE) {
lp_weight <- ictab %>% filter(model == "lp_model") %>% pull(weight)
qp_weight <- ictab %>% filter(model == "qp_model") %>% pull(weight)
} else {
lp_weight <- 0.5
qp_weight <- 0.5
}
cstv <- round((lp_cstv * lp_weight) + (qp_cstv * qp_weight))
# predicted values
pred_dat <- tibble(x = seq(0, maxx, increment))
if (weighted == TRUE) {
pred_curve <- predict_nls(lp_model,
qp_model,
interval = "conf",
newdata = ndat,
criteria = "AIC") %>%
as_tibble() %>%
bind_cols(ndat)
} else {
pred_curve <- predict_nls(lp_model,
qp_model,
interval = "conf",
newdata = ndat,
weights = c(0.5, 0.5)) %>%
as_tibble() %>%
bind_cols(ndat)
}
# # 95% Bootstrap confidence intervals
# if (confint == TRUE & force100 == FALSE) {
# fit_LP <- function(split) {
# fit <- nlsLM(formula = y ~ lp(x, a, b, cx),
# data = analysis(split),
# start = as.list(coef(corr_model)))
#
# return(fit)
# }
# set.seed(911)
#
# boot_ci <- corr_data %>%
# bootstraps(times = boot_R) %>%
# mutate(models = map(splits, possibly(fit_LP, otherwise = NULL)),
# coefs = map(models, tidy)) %>%
# int_pctl(coefs)
#
# lcl <- boot_ci$.lower[3]
# ucl <- boot_ci$.upper[3]
# }
# Table output =================================================
## ggplot of correlation
avg_plot <- corr_data %>%
ggplot(aes(x, y)) +
{
if (extrapolate == TRUE)
geom_vline(xintercept = 0, alpha = 0.2)
} +
geom_vline(xintercept = cstv,
alpha = 1,
color = blue) +
# {
# if(confint == TRUE)
# geom_vline(xintercept = c(lcl, ucl),
# alpha = 0.8,
# color = blue,
# linetype = 3)
# } +
# fitted line
geom_line(data = pred_curve,
aes(x = x, y = Estimate),
color = red) +
geom_point(size = 2, alpha = 0.5) +
geom_rug(alpha = 0.2, length = unit(2, "pt")) +
scale_y_continuous(
# start from 0 helps show the overall response
limits = c(0, maxy),
breaks = seq(0, maxy * 2, 10)) +
scale_x_continuous(
breaks = seq(0, maxx * 2, by = if_else(
condition = rangex >= 200,
true = 20,
false = if_else(
condition = rangex >= 100,
true = 10,
false = if_else(
condition = rangex >= 50,
true = 5,
false = 2))))) +
annotate("text",
label = paste("CSTV =", cstv, "ppm"),
x = cstv,
y = 0,
angle = 90,
hjust = 0,
vjust = 1.5,
alpha = 0.5) +
# {
# if(confint == TRUE)
# annotate("text",
# label = paste("LCL =", round(lcl,1), "ppm"),
# x = lcl,
# y = 0,
# angle = 90,
# hjust = 0,
# vjust = -0.5,
# alpha = 0.5)
# } + {
# if(confint == TRUE)
# annotate("text",
# label = paste("UCL =", round(ucl,1), "ppm"),
# x = ucl,
# y = 0,
# angle = 90,
# hjust = 0,
# vjust = 1.5,
# alpha = 0.5)
# } +
# annotate("text",
# alpha = 0.5,
# label = paste0("Plateau = ", round(plateau, 1), "%"),
# x = maxx,
# y = plateau,
# hjust = 1,
# vjust = 1.5) +
# annotate("text",
# alpha = 0.5,
# label = paste0("y = ", equation,
# "\nAICc = ",AICc,
# "\nRMSE = ", rmse,
# "\nR-squared = ", rsquared),
# x = maxx,
# y = 0,
# vjust = 0,
# hjust = 1) +
labs(
x = "Soil test value (mg/kg)",
y = "Relative yield (%)",
caption = paste("Each point is a site. n =", nrow(corr_data))
)
return(avg_plot)
}