-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.cu
8412 lines (6456 loc) · 291 KB
/
kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <assert.h>
#include <cuda.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "ConstDefine.h"
#include "gpukernel.h"
//#include "util.h"
#include "cusparse.h"
extern std::vector<float> cpuonethreadtimes;
extern std::vector<float> cpumthreadtimes;
extern std::vector<float> gpucoarsetimes;
extern std::vector<float> gpufinetimes;
extern std::vector<float> gpuonefinetimes;
extern std::vector<float> gpufinenoFliptimes;
extern std::vector<float> gpufinenoSortingtimes;
//using namespace std;
//#define CUDA_CALL(x) { const cudaError_t a = (x); if (a!= cudaSuccess) { printf("\nCUDA Error: %s(err_num=%d)\n", cudaGetErrorString(a), a); cudaDeviceReset(); assert(0);}}
#define ERR_NE(X,Y) do { if ((X) != (Y)) { \
fprintf(stderr,"Error in %s at %s:%d\n",__func__,__FILE__,__LINE__); \
assert(-1);}} while(0)
#define CUDA_CALL(X) ERR_NE((X),cudaSuccess)
#define CUSPARSE_CALL(X) ERR_NE((X),CUSPARSE_STATUS_SUCCESS)
/*
GPU function definition.
All functions of GPU are defined here.
*/
__device__ inline float SSimGPU(float lat1, float lon1, float lat2, float lon2) {
//float Pi = 3.1415926;
//float R = 6371004;
float MLatA, MLatB, MLonA, MLonB;
MLatA = 90 - lat1;
MLatB = 90 - lat2;
MLonA = lon1;
MLonB = lon2;
float C = sin(MLatA)*sin(MLatB)*cos(MLonA - MLonB) + cos(MLatA)*cos(MLatB);
float Distance = 6371004 *acos(C)*3.1415926 / 180;
return (1 - Distance / MAX_DIST);
}
__device__ inline float TSimGPU(int* textDataIndexPi, int* textDataIndexQj, float* textDataValuePi, float* textDataValueQj,
int numWordP, int numWordQ){
// 单个thread:读取不平衡!!
// 内存读取不符合常规操作,无法合并,同时每个thread取的个数互不相同
// choice1: each time fetch
// choice2: reg. store!! register. booming ? max: 1502 min : 0 not recommended!!!
// Q: uint32_t 和 int 比较出错?? :注意size()返回值是uint32_t即可 粗暴全部换成int!!!
// may cause divergency may optimization Qj.keywordcnt=0??
// i think is okay!!
if (numWordP == 0 || numWordQ == 0) { return 0; }
float tsimresult = 0;
// if (numWordP > numWordQ) //each time fetch: no need !! divergency cache的存在 不确定的顺序!!
// calc tsim value
for (size_t m = 0; m < numWordP; m++) {
int tmpipim = textDataIndexPi[m]; // 编译器优化应该会有cache!! 不引入也一样?
float tmpvpim = textDataValuePi[m];
for (size_t n = 0; n < numWordQ; n++) {
if (tmpipim == textDataIndexQj[n]) {
tsimresult += tmpvpim*textDataValueQj[n];
break;// 单个点不会出现重复的keyword whether 优化 不确定?? GPU可以识别break continue 不过就是指令而已
}
}
}
return tsimresult;
}
__device__ void warpReduce(volatile float* sdata,int tid ){
sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];
}
__global__ void computeSimGPU(float* latDataPGPU1, float* latDataQGPU1, float* lonDataPGPU1, float* lonDataQGPU1,
int* textDataPIndexGPU1, int* textDataQIndexGPU1, float* textDataPValueGPU1, float* textDataQValueGPU1,
int* textIdxPGPU1, int* textIdxQGPU1, int* numWordPGPU1, int* numWordQGPU1,
StatInfoTable* stattableGPU, float* keypmqnGPU, float* keypmqGPU, float* keypqGPU, float* SimResultGPU
) {
int bId = blockIdx.x;
int tId = threadIdx.x;
// 1-D 没采用2-D 可自定义存储方式
__shared__ float tmpSim[THREADNUM];
__shared__ float maxSimRow[MAXTRAJLEN];
__shared__ float maxSimColumn[MAXTRAJLEN];
//__shared__ int tid_row;
//__shared__ int tid_column;
__shared__ StatInfoTable task;
__shared__ int pointIdP, pointNumP, pointIdQ, pointNumQ;
//__shared__ size_t pmqnid, pmqid, pqid;
//__shared__ int keycntP, keycntQ, textPid, textQid;
// seems not important!
// merely for P-Q exchanging
__shared__ float *latDataPGPU, *latDataQGPU, *lonDataPGPU, *lonDataQGPU, *textDataPValueGPU, *textDataQValueGPU;
__shared__ int *textDataPIndexGPU, *textDataQIndexGPU, *textIdxPGPU, *textIdxQGPU, *numWordPGPU, *numWordQGPU;
//fetch task info
if (tId == 0) {
task = stattableGPU[bId];
latDataPGPU = latDataPGPU1;
latDataQGPU = latDataQGPU1;
lonDataPGPU = lonDataPGPU1;
lonDataQGPU = lonDataQGPU1;
textDataPIndexGPU = textDataPIndexGPU1;
textDataQIndexGPU = textDataQIndexGPU1;
textDataPValueGPU = textDataPValueGPU1;
textDataQValueGPU = textDataQValueGPU1;
textIdxPGPU = textIdxPGPU1;
textIdxQGPU = textIdxQGPU1;
numWordPGPU = numWordPGPU1;
numWordQGPU = numWordQGPU1;
pointIdP = task.latlonIdxP;
pointIdQ = task.latlonIdxQ;
pointNumP = task.pointNumP;
pointNumQ = task.pointNumQ;
//// not used in kernel-V1
//pmqnid = task.keywordpmqnMatrixId;
//pmqid = task.keywordpmqMatrixId;
//pqid = task.keywordpqMatrixId;
//keycntP = task.keycntP;
//keycntQ = task.keycntQ;
//textPid = task.textIdxP;
//textQid = task.textIdxQ;
}
/*
if (tId == 0) {
task = stattableGPU[bId];
// for cache task!
pointIdP = task.latlonIdxP;
pointIdQ = task.latlonIdxQ;
pointNumP = task.pointNumP;
pointNumQ = task.pointNumQ;
keycntP = task.keycntP;
keycntQ = task.keycntQ;
textPid = task.textIdxP;
textQid = task.textIdxQ;
// task.others have been processed in Host
pmqnid = task.keywordpmqnMatrixId;
pmqid = task.keywordpmqMatrixId;
pqid = task.keywordpqMatrixId;
if (pointNumP > pointNumQ) {
latDataPGPU = latDataPGPU1;
latDataQGPU = latDataQGPU1;
lonDataPGPU = lonDataPGPU1;
lonDataQGPU = lonDataQGPU1;
textDataPIndexGPU = textDataPIndexGPU1;
textDataQIndexGPU = textDataQIndexGPU1;
textDataPValueGPU = textDataPValueGPU1;
textDataQValueGPU = textDataQValueGPU1;
textIdxPGPU = textIdxPGPU1;
textIdxQGPU = textIdxQGPU1;
numWordPGPU = numWordPGPU1;
numWordQGPU = numWordQGPU1;
pointIdP = task.latlonIdxP;
pointIdQ = task.latlonIdxQ;
pointNumP = task.pointNumP;
pointNumQ = task.pointNumQ;
keycntP = task.keycntP;
keycntQ = task.keycntQ;
textPid = task.textIdxP;
textQid = task.textIdxQ;
}
else {
latDataQGPU = latDataPGPU1;
latDataPGPU = latDataQGPU1;
lonDataQGPU = lonDataPGPU1;
lonDataPGPU = lonDataQGPU1;
textDataQIndexGPU = textDataPIndexGPU1;
textDataPIndexGPU = textDataQIndexGPU1;
textDataQValueGPU = textDataPValueGPU1;
textDataPValueGPU = textDataQValueGPU1;
textIdxQGPU = textIdxPGPU1;
textIdxPGPU = textIdxQGPU1;
numWordQGPU = numWordPGPU1;
numWordPGPU = numWordQGPU1;
pointIdQ = task.latlonIdxP;
pointIdP = task.latlonIdxQ;
pointNumQ = task.pointNumP;
pointNumP = task.pointNumQ;
keycntQ = task.keycntP;
keycntP = task.keycntQ;
textQid = task.textIdxP;
textPid = task.textIdxQ;
}
}
*/
__syncthreads();
__shared__ int height, width;
// 不妨设 numP > numQ
// initialize maxSimRow maxSimColumn
/*
for (size_t i = 0; i < ((MAXTRAJLEN - 1) / THREADNUM) + 1; i++) {
maxSimRow[tId + i*THREADNUM] = 0;
maxSimColumn[tId + i*THREADNUM] = 0;
}
*/
/*
// STEP-0: GET the text-sim matrix(global memory)
// pmqn
height = keycntP, width = keycntQ;
for (size_t i = 0; i < keycntP; i += THREADROW) {
int tmpflagi = i + tId % THREADROW;
int pmindex, pmvalue;
if (tmpflagi < keycntP) {
pmindex = textDataPIndexGPU[textPid + tmpflagi];
pmvalue = textDataPValueGPU[textPid + tmpflagi];
}
for (size_t j = 0; j < keycntQ; j += THREADCOLUMN) {
int tmpflagj = j + tId / THREADROW;
int qnindex, qnvalue;
if (tmpflagj < keycntQ) {
qnindex = textDataQIndexGPU[textQid + tmpflagj];
qnvalue = textDataQValueGPU[textQid + tmpflagj];
}
// in such loop, can only index in this way!!
keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi] = 0;
if ((tmpflagi < keycntP) && (tmpflagj < keycntQ) && (pmindex == qnindex)) {
keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi] = pmvalue*qnvalue;
}
}
}
__syncthreads();
// pmq
// 16*16 方阵加速 -> 转置(~3x)
// __shared__ int pointnumq, textidq;
__shared__ float tmppmq[THREADROW2][THREADCOLUMN2];
height = keycntP, width = pointNumQ;
// two-layer loop similar to block-net
for (size_t i = 0; i < keycntP; i += THREADROW2) {
int tmpflagi = i + tId % THREADROW2;
int tmpflagi2 = i + tId / THREADROW2;
for (size_t j = 0; j < pointNumQ; j += THREADCOLUMN2) {
int tmpflagj = j + tId / THREADROW2;
int tmpflagj2 = j + tId % THREADROW2;
// similar to transpose
// tmppmq[tId / THREADCOLUMN2][tId % THREADCOLUMN2] = 0; // 行方式
tmppmq[tId % THREADROW2][tId / THREADROW2] = 0; // 列方式
if ((tmpflagi < keycntP) && (tmpflagj < pointNumQ)) { // thread filtering
int pointnumq, textidq;
pointnumq = numWordQGPU[pointIdQ + tmpflagj];
textidq = textIdxQGPU[pointIdQ + tmpflagj];
for (size_t k = 0; k < pointnumq; k++) {
// just (textidq + k) needs some effort
tmppmq[tId % THREADROW2][tId / THREADROW2] += keypmqnGPU[pmqnid + (textidq + k)*height + tmpflagi];
}
}
__syncthreads();
// bounding problem!
if ((tmpflagi2 < keycntP) && (tmpflagj2 < pointNumQ)) { // thread filtering
keypmqGPU[pmqid + tmpflagi2*width + tmpflagj2] = tmppmq[tId / THREADROW2][tId % THREADROW2];
}
}
}
// pq
height = pointNumQ, width = pointNumP;
for (size_t i = 0; i < pointNumQ; i += THREADROW2) {
int tmpflagi = i + tId%THREADROW2;
int tmpflagi2 = i + tId / THREADROW2;
for (size_t j = 0; j < pointNumP; j += THREADCOLUMN2) {
int tmpflagj = j + tId / THREADROW2;
int tmpflagj2 = j + tId % THREADROW2;
tmppmq[tId % THREADROW2][tId / THREADROW2] = 0;
if ((tmpflagi < pointNumQ) && (tmpflagj < pointNumP)) {
int pointnump, textidp;
pointnump = numWordPGPU[pointIdP + tmpflagj];
textidp = textIdxPGPU[pointIdP + tmpflagj];
for (size_t k = 0; k < pointnump; k++) {
tmppmq[tId % THREADROW2][tId / THREADROW2] += keypmqGPU[pqid + (textidp + k)*height + tmpflagi];
}
}
__syncthreads();
if ((tmpflagi2 < pointNumQ) && (tmpflagj2 < pointNumP)) {
keypqGPU[pqid + tmpflagi2*width + tmpflagj2] = tmppmq[tId / THREADROW2][tId % THREADROW2];
}
}
}
*/
// STEP-1: GET the final sim result: SimResultGPU
// 潜在debug:
// only correct when THREADNUM > MAXTRAJLEN;
// initilize shared memory
if (tId < MAXTRAJLEN) {
maxSimRow[tId] = 0;
maxSimColumn[tId] = 0;
}
__syncthreads();
height = pointNumP, width = pointNumQ;
// doesnot matter !!
for (size_t i = 0; i < pointNumP; i += THREADROW) {
// simply because of THREADROW = 32, THREADROW = 8, 32 > 8
// here 列方式
// not real 128 -> 32倍近似??
// but there is cache ??
int tmpflagi = i + tId % THREADROW;
float latP, latQ, lonP, lonQ;
int textIdP, textIdQ, numWordP, numWordQ;
if (tmpflagi < pointNumP) {
latP = latDataPGPU[pointIdP + tmpflagi];
lonP = lonDataPGPU[pointIdP + tmpflagi];
textIdP = textIdxPGPU[pointIdP + tmpflagi];
numWordP = numWordPGPU[pointIdP + tmpflagi];
//printf("%f,%f \n", latP, lonP);
}
for (size_t j = 0; j < pointNumQ; j += THREADCOLUMN) {
int tmpflagj = j + tId / THREADROW;
if (tmpflagj < pointNumQ) {
latQ = latDataQGPU[pointIdQ + tmpflagj];
lonQ = lonDataQGPU[pointIdQ + tmpflagj];
textIdQ = textIdxQGPU[pointIdQ + tmpflagj];
numWordQ = numWordQGPU[pointIdQ + tmpflagj];
}
tmpSim[tId] = -1;//技巧,省去下面的tID=0判断
// debug: 边界条件错误!! 逻辑错误 太慢!! nearly 2 days
// if (tmpflagi && pointNumQ)
if ((tmpflagi < pointNumP) && (tmpflagj < pointNumQ)) { // bound condition
//// not recommended! divergency!!
//float tsim = 0;
//if (numWordP > numWordQ) {
//}
//else {
//}
float tsim = 0;
// way1: fool
tsim = TSimGPU(&textDataPIndexGPU[textIdP], &textDataQIndexGPU[textIdQ], &textDataPValueGPU[textIdP], &textDataQValueGPU[textIdQ], numWordP, numWordQ);
// way2: store way -> fetch way fetch from global memory!!
//tsim = keypqGPU[pqid + tmpflagj*height + tmpflagi];
float ssim = SSimGPU(latP, lonP, latQ, lonQ);
tmpSim[tId] = ALPHA * ssim + (1 - ALPHA) * tsim;
}
// else {
//
// }
// block 同步
// 很有必要
__syncthreads();
////
//// //优化
////if (tId == 0) {
//// tid_row = i + THREADROW > pointNumP ? pointNumP - i : THREADROW;
//// tid_column = j + THREADCOLUMN > pointNumP ? pointNumQ - j : THREADCOLUMN;
////}
////__syncthreads();
////
// ************--shared_mem process--************
// very naive process
// get tmp-row-max: full warp active
//tmpmaxsimRow[tId % THREADROW];
float tmpmaxSim = -1;
if (tId / THREADROW == 0) {
for (size_t k = 0; k < THREADCOLUMN; k++) {
if (tmpSim[k*THREADROW + tId] > tmpmaxSim) {
tmpmaxSim = tmpSim[k*THREADROW + tId];
}
}
maxSimRow[i + tId] = (maxSimRow[i + tId] > tmpmaxSim ? maxSimRow[i + tId] : tmpmaxSim);
}
__syncthreads(); // still need!
// get tmp-column-max: 1/32 warp active
//tmpmaxsimColumn[tId / THREADROW];
tmpmaxSim = -1;
if (tId%THREADROW == 0) {
for (size_t k = 0; k < THREADROW; k++) {
if (tmpSim[k + tId] > tmpmaxSim) {
tmpmaxSim = tmpSim[k + tId];
}
}
maxSimColumn[j + tId / THREADROW] = (maxSimColumn[j + tId / THREADROW] > tmpmaxSim ? maxSimColumn[j + tId / THREADROW] : tmpmaxSim);
}
__syncthreads(); // still need!
}
}
// sum reduction
// 潜在debug:
// 前提:
// THREADNUM > MAX-MAXTRAJLEN
//for (size_t activethread = THREADNUM / 2; activethread > 32; activethread >>= 1) {
for (size_t activethread = MAXTRAJLEN / 2; activethread > 32; activethread >>= 1) {
if (tId < activethread) {
maxSimRow[tId] += maxSimRow[tId + activethread];
__syncthreads();
}
}
if (tId < 32) warpReduce(maxSimRow, tId);
// }
//for (size_t activethread = THREADNUM / 2; activethread > 32; activethread >>= 1) {
for (size_t activethread = MAXTRAJLEN / 2; activethread > 32; activethread >>= 1) {
if (tId < activethread) {
maxSimColumn[tId] += maxSimColumn[tId + activethread];
__syncthreads();
}
}
if (tId < 32) warpReduce(maxSimColumn, tId);
//}
if (tId == 0) {
SimResultGPU[bId] = maxSimRow[0] / pointNumP + maxSimColumn[0] / pointNumQ;
}
}
/*****
computeTSimpmqn dependency:
|_textDataPIndexGPU,textDataQIndexGPU,textDataPValueGPU,textDataQValueGPU --->|
| |_textPid,textQid |
|_keypmqnGPU <----------------------------------------------------------------| this is pm-qn p-major
|_pmqnid
|_keycntP,keycntQ
****/
__global__ void computeTSimpmqn(float* latDataPGPU1, float* latDataQGPU1, float* lonDataPGPU1, float* lonDataQGPU1,
int* textDataPIndexGPU1, int* textDataQIndexGPU1, float* textDataPValueGPU1, float* textDataQValueGPU1,
int* textIdxPGPU1, int* textIdxQGPU1, int* numWordPGPU1, int* numWordQGPU1,
StatInfoTable* stattableGPU, float* keypmqnGPU, float* keypmqGPU, float* keypqGPU, float* SimResultGPU
) {
int bId = blockIdx.x; // bId is the only index for block to determine where to fetch data, and is 0 ~ MAX_BLOCKNUM-1
int tId = threadIdx.x;
// 1-D 没采用2-D 可自定义存储方式
__shared__ float tmpSim[THREADNUM];
__shared__ float maxSimRow[MAXTRAJLEN];
__shared__ float maxSimColumn[MAXTRAJLEN];
//__shared__ int tid_row;
//__shared__ int tid_column;
__shared__ StatInfoTable task;
__shared__ int pointIdP, pointNumP, pointIdQ, pointNumQ;
//debug: 数据类型 big int !! -> int , size_t
//__shared__ int pmqnid, pmqid, pqid;
__shared__ size_t pmqnid, pmqid, pqid;
__shared__ int keycntP, keycntQ, textPid, textQid;
// seems not important!
// merely for P-Q exchanging
__shared__ float *latDataPGPU, *latDataQGPU, *lonDataPGPU, *lonDataQGPU, *textDataPValueGPU, *textDataQValueGPU;
__shared__ int *textDataPIndexGPU, *textDataQIndexGPU, *textIdxPGPU, *textIdxQGPU, *numWordPGPU, *numWordQGPU;
//fetch task info
if (tId == 0) {
task = stattableGPU[bId];
latDataPGPU = latDataPGPU1;
latDataQGPU = latDataQGPU1;
lonDataPGPU = lonDataPGPU1;
lonDataQGPU = lonDataQGPU1;
textDataPIndexGPU = textDataPIndexGPU1;
textDataQIndexGPU = textDataQIndexGPU1;
textDataPValueGPU = textDataPValueGPU1;
textDataQValueGPU = textDataQValueGPU1;
textIdxPGPU = textIdxPGPU1;
textIdxQGPU = textIdxQGPU1;
numWordPGPU = numWordPGPU1;
numWordQGPU = numWordQGPU1;
pointIdP = task.latlonIdxP;
pointIdQ = task.latlonIdxQ;
pointNumP = task.pointNumP;
pointNumQ = task.pointNumQ;
// debug: wrong silly code mistake!
//pmqnid = task.keywordpmqMatrixId;
//pmqid = task.keywordpmqnMatrixId;
pmqnid = task.keywordpmqnMatrixId; // starting ID in GPU for each block, accumulated
pmqid = task.keywordpmqMatrixId;
pqid = task.keywordpqMatrixId;
keycntP = task.keycntP;
keycntQ = task.keycntQ;
textPid = task.textIdxP; // starting position of text data for each task / block, accumulated
textQid = task.textIdxQ;
}
__syncthreads();
// STEP-0: GET the text-sim matrix(global memory)
__shared__ int height, width;
// pmqn
// keycntP including all the padding
height = keycntP, width = keycntQ;
for (size_t i = 0; i < keycntP; i += THREADROW) {
int tmpflagi = i + tId % THREADROW;
//debug: float -> int 精度问题 数据类型定义出错
// int pmindex,pmvalue;
int pmindex;
float pmvalue;
//if (tmpflagi < keycntP) {
// pmindex = textDataPIndexGPU[textPid + tmpflagi];
// //if (pmindex == -1) continue;
// pmvalue = textDataPValueGPU[textPid + tmpflagi];
//}
for (size_t j = 0; j < keycntQ; j += THREADCOLUMN) {
int tmpflagj = j + tId / THREADROW;
int qnindex;
float qnvalue;
//if (tmpflagj < keycntQ) {
// qnindex = textDataQIndexGPU[textQid + tmpflagj];
// //if (qnindex == -1) continue;
// qnvalue = textDataQValueGPU[textQid + tmpflagj];
//}
// in such loop, can only index in this way!!
// int -> size_t 兼容
// debug: initialize:overlap among blocks
//keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi] = 0;
if ((tmpflagi < keycntP) && (tmpflagj < keycntQ)) { // avoid overlapping of keypmqnGPU among blocks !!
pmindex = textDataPIndexGPU[textPid + tmpflagi];
//if (pmindex == -1) continue;
pmvalue = textDataPValueGPU[textPid + tmpflagi];
qnindex = textDataQIndexGPU[textQid + tmpflagj];
//if (qnindex == -1) continue;
qnvalue = textDataQValueGPU[textQid + tmpflagj];
keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi] = 0;
// debug: excluding padding here!
if ((pmindex != -1) && (qnindex != -1) && (pmindex == qnindex)) {
keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi] = pmvalue*qnvalue;
//printf("pmqn-> blockId:%d threadId:%d startpos:%d index:%zu value:%.5f\n", bId, tId, pmqnid, pmqnid + tmpflagj*height + tmpflagi, pmvalue*qnvalue);
//printf("pmqn s1 -> blockId:%d threadId:%d startpos:%d value:%.5f\n", bId, tId, pmqnid, pmvalue*qnvalue);
}
//printf("pmqn confirm -> blockId:%d threadId:%d startpos:%d value:%.5f\n", bId, tId, pmqnid, keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi]);
}
/*
// debug: excluding padding here!
if ((pmindex != -1) && (qnindex != -1) && (tmpflagi < keycntP) && (tmpflagj < keycntQ) && (pmindex == qnindex)) {
keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi] = pmvalue*qnvalue;
//printf("pmqn-> blockId:%d threadId:%d startpos:%d index:%zu value:%.5f\n", bId, tId, pmqnid, pmqnid + tmpflagj*height + tmpflagi, pmvalue*qnvalue);
//printf("pmqn-> blockId:%d threadId:%d startpos:%d value:%.5f\n", bId, tId, pmqnid, pmvalue*qnvalue);
}
*/
// block同步! maybe not necessary because no overlap of memory write and read here, is register reused? 决定是否需要同步
__syncthreads();
}
}
}
__global__ void computeTSimpmqnGridlevel(int* textDataPIndexGPU, int* textDataQIndexGPU, float* textDataPValueGPU, float* textDataQValueGPU,
int textPid, int textQid, int keycntP, int keycntQ, float* tmpdensepmqnGPU
) {
const unsigned int idx = (blockIdx.x*blockDim.x) + threadIdx.x;
const unsigned int idy = (blockIdx.y*blockDim.y) + threadIdx.y;
//debug:有问题 Gridlevel传入dinm3时存在padding
//const unsigned int thread_id = ((gridDim.x*blockDim.x)*idy) + idx;
const unsigned int thread_id = ((keycntP)*idy) + idx;
int pmindex, qnindex;
float pmvalue, qnvalue;
if ((idx < keycntP) && (idy < keycntQ)) { // filtering threads
pmindex = textDataPIndexGPU[textPid + idx];
pmvalue = textDataPValueGPU[textPid + idx];
qnindex = textDataQIndexGPU[textQid + idy];
qnvalue = textDataQValueGPU[textQid + idy];
tmpdensepmqnGPU[thread_id] = (float)0.0;
if ((pmindex != -1) && (qnindex != -1) && (pmindex == qnindex)) {
tmpdensepmqnGPU[thread_id] = pmvalue*qnvalue;
//printf("tmpdensepmqnGPU[%d] = %f\n", thread_id, pmvalue*qnvalue);
}
}
}
/******
computeTSimpmq dependency
|_keypmqnGPU ---------------------->| this is pm-qn p-major
| |_pmqnid |
| |_numWordQGPU,textIdxQGPU |
| |_pointIdQ |
|_keypmqGPU <----------------------| this is q-pm q-major
|_pmqid
|_keycntP,pointNumQ
*******/
__global__ void computeTSimpmq(float* latDataPGPU1, float* latDataQGPU1, float* lonDataPGPU1, float* lonDataQGPU1,
int* textDataPIndexGPU1, int* textDataQIndexGPU1, float* textDataPValueGPU1, float* textDataQValueGPU1,
int* textIdxPGPU1, int* textIdxQGPU1, int* numWordPGPU1, int* numWordQGPU1,
StatInfoTable* stattableGPU, float* keypmqnGPU, float* keypmqGPU, float* keypqGPU, float* SimResultGPU
) {
int bId = blockIdx.x;
int tId = threadIdx.x;
// 1-D 没采用2-D 可自定义存储方式
__shared__ float tmpSim[THREADNUM];
__shared__ float maxSimRow[MAXTRAJLEN];
__shared__ float maxSimColumn[MAXTRAJLEN];
//__shared__ int tid_row;
//__shared__ int tid_column;
__shared__ StatInfoTable task;
__shared__ int pointIdP, pointNumP, pointIdQ, pointNumQ;
__shared__ size_t pmqnid, pmqid, pqid;
__shared__ int keycntP, keycntQ, textPid, textQid;
// seems not important!
// merely for P-Q exchanging
__shared__ float *latDataPGPU, *latDataQGPU, *lonDataPGPU, *lonDataQGPU, *textDataPValueGPU, *textDataQValueGPU;
__shared__ int *textDataPIndexGPU, *textDataQIndexGPU, *textIdxPGPU, *textIdxQGPU, *numWordPGPU, *numWordQGPU;
//fetch task info
if (tId == 0) {
task = stattableGPU[bId];
latDataPGPU = latDataPGPU1;
latDataQGPU = latDataQGPU1;
lonDataPGPU = lonDataPGPU1;
lonDataQGPU = lonDataQGPU1;
textDataPIndexGPU = textDataPIndexGPU1;
textDataQIndexGPU = textDataQIndexGPU1;
textDataPValueGPU = textDataPValueGPU1;
textDataQValueGPU = textDataQValueGPU1;
textIdxPGPU = textIdxPGPU1;
textIdxQGPU = textIdxQGPU1;
numWordPGPU = numWordPGPU1;
numWordQGPU = numWordQGPU1;
pointIdP = task.latlonIdxP;
pointIdQ = task.latlonIdxQ;
pointNumP = task.pointNumP;
pointNumQ = task.pointNumQ;
// debug: wrong silly code mistake!
//pmqnid = task.keywordpmqMatrixId;
//pmqid = task.keywordpmqnMatrixId;
pmqnid = task.keywordpmqnMatrixId;
pmqid = task.keywordpmqMatrixId;
pqid = task.keywordpqMatrixId;
keycntP = task.keycntP;
keycntQ = task.keycntQ;
textPid = task.textIdxP;
textQid = task.textIdxQ;
}
__syncthreads();
// STEP-0: GET the text-sim matrix(global memory)
__shared__ int height, width;
// check pmqnMatrix
//height = keycntP, width = keycntQ;
//for (size_t i = 0; i < keycntP; i += THREADROW) {
// int tmpflagi = i + tId % THREADROW;
// for (size_t j = 0; j < keycntQ; j += THREADCOLUMN) {
// int tmpflagj = j + tId / THREADROW;
// if ((tmpflagi < keycntP) && (tmpflagj < keycntQ)) {
// printf("pmqn check -> blockId:%d threadId:%d startpos:%d value:%.5f\n", bId, tId, pmqnid, keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi]);
// }
// }
//}
// pmq
// 16*16 方阵加速 -> 转置(~3x)
// __shared__ int pointnumq, textidq;
__shared__ float tmppmq[THREADROW2][THREADCOLUMN2];
height = keycntP, width = pointNumQ;
// two-layer loop similar to block-net
for (size_t i = 0; i < keycntP; i += THREADROW2) {
int tmpflagi = i + tId % THREADROW2;
int tmpflagi2 = i + tId / THREADROW2;
for (size_t j = 0; j < pointNumQ; j += THREADCOLUMN2) {
int tmpflagj = j + tId / THREADROW2;
int tmpflagj2 = j + tId % THREADROW2;
// similar to transpose
// tmppmq[tId / THREADCOLUMN2][tId % THREADCOLUMN2] = 0; // 行方式
// initialization of shared mem: tmppmq, must be here, or we have uninitialized tmppmq
tmppmq[tId % THREADROW2][tId / THREADROW2] = 0; // 列方式
if ((tmpflagi < keycntP) && (tmpflagj < pointNumQ)) { // thread filtering
int keywordnumq, textidq;
// ABOUT PADDING problem:
keywordnumq = numWordQGPU[pointIdQ + tmpflagj]; // this is real # of keyword for each point without padding!
textidq = textIdxQGPU[pointIdQ + tmpflagj]; // this is the keyword starting id for each point after padding, be careful!
// but attention: the padding is traj-level, so the padding is always patched to the last point!!
// as long as the textidq and textQid accordant! as they make subtraction!
for (size_t k = 0; k < keywordnumq; k++) {
// just (textidq + k) needs some effort
//if (bId == 60){
// printf("************ special pmq-> k:%d blockId:%d threadId:%d value:%0.5f\n", k, bId, tId, keypmqnGPU[pmqnid + (textidq + k)*height + tmpflagi]);
//}
// debug: fecthing wrong keypmqnGPU here! data structure!
tmppmq[tId % THREADROW2][tId / THREADROW2] += keypmqnGPU[pmqnid + (textidq - textQid + k)*height + tmpflagi];
//tmppmq[tId % THREADROW2][tId / THREADROW2] += keypmqnGPU[pmqnid + (textidq + k)*height + tmpflagi];
//if (bId == 60){
// printf("************ special pmq-> k:%d blockId:%d threadId:%d value:%0.5f\n", k, bId, tId, keypmqnGPU[pmqnid + (textidq + k)*height + tmpflagi]);
//}
}
//printf("pmq s1 -> blockId:%d threadId:%d keywordnumq:%d textidq:%d xindex:%d yindex:%d value:%.5f\n", bId, tId, keywordnumq, textidq, tId%THREADROW2, tId / THREADROW2, tmppmq[tId % THREADROW2][tId / THREADROW2]);
}
// this is necessary ! because of tmppmq;
__syncthreads();
// this is not a propriate place for printf as no thread filtering
//printf("pmq-> blockId:%d threadId:%d xindex:%d yindex:%d value:%.5f\n", bId, tId, tId%THREADROW2, tId / THREADROW2, tmppmq[tId % THREADROW2][tId / THREADROW2]);
// bounding problem!
if ((tmpflagi2 < keycntP) && (tmpflagj2 < pointNumQ)) { // thread filtering
keypmqGPU[pmqid + tmpflagi2*width + tmpflagj2] = tmppmq[tId / THREADROW2][tId % THREADROW2];
//printf("pmq s2-> blockId:%d threadId:%d xindex:%d yindex:%d value:%.5f\n", bId, tId, tId / THREADROW2, tId % THREADROW2, tmppmq[tId / THREADROW2][tId % THREADROW2]);
}
// this is necessary ! because of tmppmq;
__syncthreads();
}
}
}
__global__ void computeTSimpmqNoF(float* latDataPGPU1, float* latDataQGPU1, float* lonDataPGPU1, float* lonDataQGPU1,
int* textDataPIndexGPU1, int* textDataQIndexGPU1, float* textDataPValueGPU1, float* textDataQValueGPU1,
int* textIdxPGPU1, int* textIdxQGPU1, int* numWordPGPU1, int* numWordQGPU1,
StatInfoTable* stattableGPU, float* keypmqnGPU, float* keypmqGPU, float* keypqGPU, float* SimResultGPU
) {
int bId = blockIdx.x;
int tId = threadIdx.x;
// 1-D 没采用2-D 可自定义存储方式
__shared__ float tmpSim[THREADNUM];
__shared__ float maxSimRow[MAXTRAJLEN];
__shared__ float maxSimColumn[MAXTRAJLEN];
//__shared__ int tid_row;
//__shared__ int tid_column;
__shared__ StatInfoTable task;
__shared__ int pointIdP, pointNumP, pointIdQ, pointNumQ;
__shared__ size_t pmqnid, pmqid, pqid;
__shared__ int keycntP, keycntQ, textPid, textQid;
// seems not important!
// merely for P-Q exchanging
__shared__ float *latDataPGPU, *latDataQGPU, *lonDataPGPU, *lonDataQGPU, *textDataPValueGPU, *textDataQValueGPU;
__shared__ int *textDataPIndexGPU, *textDataQIndexGPU, *textIdxPGPU, *textIdxQGPU, *numWordPGPU, *numWordQGPU;
//fetch task info
if (tId == 0) {
task = stattableGPU[bId];
latDataPGPU = latDataPGPU1;
latDataQGPU = latDataQGPU1;
lonDataPGPU = lonDataPGPU1;
lonDataQGPU = lonDataQGPU1;
textDataPIndexGPU = textDataPIndexGPU1;
textDataQIndexGPU = textDataQIndexGPU1;
textDataPValueGPU = textDataPValueGPU1;
textDataQValueGPU = textDataQValueGPU1;
textIdxPGPU = textIdxPGPU1;
textIdxQGPU = textIdxQGPU1;
numWordPGPU = numWordPGPU1;
numWordQGPU = numWordQGPU1;
pointIdP = task.latlonIdxP;
pointIdQ = task.latlonIdxQ;
pointNumP = task.pointNumP;
pointNumQ = task.pointNumQ;
// debug: wrong silly code mistake!
//pmqnid = task.keywordpmqMatrixId;
//pmqid = task.keywordpmqnMatrixId;
pmqnid = task.keywordpmqnMatrixId;
pmqid = task.keywordpmqMatrixId;
pqid = task.keywordpqMatrixId;
keycntP = task.keycntP;
keycntQ = task.keycntQ;
textPid = task.textIdxP;
textQid = task.textIdxQ;
}
__syncthreads();
// STEP-0: GET the text-sim matrix(global memory)
__shared__ int height, width;
// check pmqnMatrix
//height = keycntP, width = keycntQ;
//for (size_t i = 0; i < keycntP; i += THREADROW) {
// int tmpflagi = i + tId % THREADROW;
// for (size_t j = 0; j < keycntQ; j += THREADCOLUMN) {
// int tmpflagj = j + tId / THREADROW;
// if ((tmpflagi < keycntP) && (tmpflagj < keycntQ)) {
// printf("pmqn check -> blockId:%d threadId:%d startpos:%d value:%.5f\n", bId, tId, pmqnid, keypmqnGPU[pmqnid + tmpflagj*height + tmpflagi]);
// }
// }
//}
// pmq
// 16*16 方阵加速 -> 转置(~3x)
// __shared__ int pointnumq, textidq;
//__shared__ float tmppmq[THREADROW2][THREADCOLUMN2];
height = keycntP, width = pointNumQ;
// two-layer loop similar to block-net
for (size_t i = 0; i < keycntP; i += THREADROW2) {
int tmpflagi = i + tId % THREADROW2;
int tmpflagi2 = i + tId / THREADROW2;
for (size_t j = 0; j < pointNumQ; j += THREADCOLUMN2) {
int tmpflagj = j + tId / THREADROW2;
int tmpflagj2 = j + tId % THREADROW2;
// similar to transpose
// tmppmq[tId / THREADCOLUMN2][tId % THREADCOLUMN2] = 0; // 行方式
// initialization of shared mem: tmppmq, must be here, or we have uninitialized tmppmq
//tmppmq[tId % THREADROW2][tId / THREADROW2] = 0; // 列方式
if ((tmpflagi < keycntP) && (tmpflagj < pointNumQ)) { // thread filtering
int keywordnumq, textidq;
// ABOUT PADDING problem:
keywordnumq = numWordQGPU[pointIdQ + tmpflagj]; // this is real # of keyword for each point without padding!
textidq = textIdxQGPU[pointIdQ + tmpflagj]; // this is the keyword starting id for each point after padding, be careful!
// but attention: the padding is traj-level, so the padding is always patched to the last point!!
// as long as the textidq and textQid accordant! as they make subtraction!
for (size_t k = 0; k < keywordnumq; k++) {
// just (textidq + k) needs some effort
//if (bId == 60){
// printf("************ special pmq-> k:%d blockId:%d threadId:%d value:%0.5f\n", k, bId, tId, keypmqnGPU[pmqnid + (textidq + k)*height + tmpflagi]);
//}
// debug: fecthing wrong keypmqnGPU here! data structure!
//tmppmq[tId % THREADROW2][tId / THREADROW2] += keypmqnGPU[pmqnid + (textidq - textQid + k)*height + tmpflagi];