This repository has been archived by the owner on Aug 26, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathblackscholes_cuda.py
125 lines (102 loc) · 3.82 KB
/
blackscholes_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from __future__ import print_function
import math
import time
import numpy as np
from numba import cuda
from blackscholes_numba import black_scholes, black_scholes_numba
RISKFREE = 0.02
VOLATILITY = 0.30
A1 = 0.31938153
A2 = -0.356563782
A3 = 1.781477937
A4 = -1.821255978
A5 = 1.330274429
RSQRT2PI = 0.39894228040143267793994605993438
@cuda.jit(device=True)
def cnd_cuda(d):
K = 1.0 / (1.0 + 0.2316419 * math.fabs(d))
ret_val = (RSQRT2PI * math.exp(-0.5 * d * d) *
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))))
if d > 0:
ret_val = 1.0 - ret_val
return ret_val
@cuda.jit
def black_scholes_cuda(callResult, putResult, S, X,
T, R, V):
# S = stockPrice
# X = optionStrike
# T = optionYears
# R = Riskfree
# V = Volatility
i = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
if i >= S.shape[0]:
return
sqrtT = math.sqrt(T[i])
d1 = (math.log(S[i] / X[i]) + (R + 0.5 * V * V) * T[i]) / (V * sqrtT)
d2 = d1 - V * sqrtT
cndd1 = cnd_cuda(d1)
cndd2 = cnd_cuda(d2)
expRT = math.exp((-1. * R) * T[i])
callResult[i] = (S[i] * cndd1 - X[i] * expRT * cndd2)
putResult[i] = (X[i] * expRT * (1.0 - cndd2) - S[i] * (1.0 - cndd1))
def randfloat(rand_var, low, high):
return (1.0 - rand_var) * low + rand_var * high
def main (*args):
OPT_N = 4000000
iterations = 10
if len(args) >= 2:
iterations = int(args[0])
callResultNumpy = np.zeros(OPT_N)
putResultNumpy = -np.ones(OPT_N)
stockPrice = randfloat(np.random.random(OPT_N), 5.0, 30.0)
optionStrike = randfloat(np.random.random(OPT_N), 1.0, 100.0)
optionYears = randfloat(np.random.random(OPT_N), 0.25, 10.0)
callResultNumba = np.zeros(OPT_N)
putResultNumba = -np.ones(OPT_N)
callResultCuda = np.zeros(OPT_N)
putResultCuda = -np.ones(OPT_N)
time0 = time.time()
for i in range(iterations):
black_scholes(callResultNumpy, putResultNumpy, stockPrice,
optionStrike, optionYears, RISKFREE, VOLATILITY)
time1 = time.time()
print("Numpy Time: %f msec" %
((1000 * (time1 - time0)) / iterations))
time0 = time.time()
for i in range(iterations):
black_scholes_numba(callResultNumba, putResultNumba, stockPrice,
optionStrike, optionYears, RISKFREE, VOLATILITY)
time1 = time.time()
print("Numba Time: %f msec" %
((1000 * (time1 - time0)) / iterations))
time0 = time.time()
blockdim = 1024, 1
griddim = int(math.ceil(float(OPT_N) / blockdim[0])), 1
stream = cuda.stream()
d_callResult = cuda.to_device(callResultCuda, stream)
d_putResult = cuda.to_device(putResultCuda, stream)
d_stockPrice = cuda.to_device(stockPrice, stream)
d_optionStrike = cuda.to_device(optionStrike, stream)
d_optionYears = cuda.to_device(optionYears, stream)
time1 = time.time()
for i in range(iterations):
black_scholes_cuda[griddim, blockdim, stream](
d_callResult, d_putResult, d_stockPrice, d_optionStrike,
d_optionYears, RISKFREE, VOLATILITY)
d_callResult.copy_to_host(callResultCuda, stream)
d_putResult.copy_to_host(putResultCuda, stream)
stream.synchronize()
time2 = time.time()
dt = (time1 - time0) * 10 + (time2 - time1)
print("numba.cuda time: %f msec" % ((1000 * dt) / iterations))
delta = np.abs(callResultNumpy - callResultNumba)
L1norm = delta.sum() / np.abs(callResultNumpy).sum()
print("L1 norm: %E" % L1norm)
print("Max absolute error: %E" % delta.max())
delta = np.abs(callResultNumpy - callResultCuda)
L1norm = delta.sum() / np.abs(callResultNumpy).sum()
print("L1 norm (CUDA): %E" % L1norm)
print("Max absolute error (CUDA): %E" % delta.max())
if __name__ == "__main__":
import sys
main(*sys.argv[1:])