-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathserver.py
executable file
·176 lines (137 loc) · 5.88 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
from os.path import basename, isfile
from scipy.spatial.distance import cdist, euclidean
from flask import Flask, request
import numpy as np
import json
import time
import cPickle
import torchfile
from sklearn.neighbors import NearestNeighbors
from sklearn.decomposition import PCA, FastICA
from sklearn.manifold import TSNE
print 'Loading feature vectors.'
features_filenames = {('Allegheny', 19) : 'level19/Allegheny_z19_features.t7',
('New_York' , 19) : 'level19/New_York_z19_features.t7',
('San_Fran' , 19) : 'level19/San_Fran_z19_features.t7',
('Detroit' , 19) : 'level19/Detroit_z19_features.t7'}
all_features = {region_level : torchfile.load(features_filenames[region_level]) \
for region_level in features_filenames}
def get_lat_long(filename):
return (float(filename.split("_")[1]), float(filename.split("_")[2]))
print 'Loading filenames.'
tile_filenames = {('Allegheny', 19) : 'level19/Allegheny_z19.txt',
('New_York' , 19) : 'level19/New_York_z19.txt',
('San_Fran' , 19) : 'level19/San_Fran_z19.txt',
('Detroit' , 19) : 'level19/Detroit_z19.txt'}
# dict of filename : (filename idx, (lat, long))
tile_dicts = {}
all_filenames = {}
for region_level, f_name in tile_filenames.viewitems():
with open(f_name, 'r') as f:
filenames = [basename(line.strip()) for line in f.readlines()] #filenames
print filenames[:10], '...'
all_filenames[region_level] = filenames
tile_dicts[region_level] = {filename : i \
for i, filename in enumerate(filenames)}
knn_trees = {}
for region_level, features in all_features.viewitems():
ball_tree = NearestNeighbors(algorithm='ball_tree')
print 'inserting into ' + str(region_level) + ' tree... (takes ~60 seconds)'
m = time.time()
neighbours = ball_tree.fit(features)
knn_trees[region_level] = neighbours
print 'inserted into tree, took: ' + str(time.time() - m) + 's'
# get index of 'search' in list 'strings'
def match_str(search, strings):
for fni, fn in enumerate(filenames):
if search in fn:
return fni, fn
return None, None
# bruteforce search
def find_matches(search, filenames, features):
# given a tile name, find its index
fni, fn = match_str(search, filenames)
# tile not found
if fn is None:
return []
#Pairwise distance
distances = cdist([features[fni]], features, 'sqeuclidean')[0]
matches = zip(distances, filenames)
matches.sort()
return matches
def maybe_wrap(x):
if not hasattr(x, '__iter__'):
return (x,)
return x
app = Flask("terranet")
@app.route("/")
def search():
b_start = time.time()
searches = request.args.getlist('filename', None)
level = int(request.args.get('level', 19))
region = request.args.get('region', 'Allegheny')
limit = int(request.args.get('limit', 25))
if limit > 100:
limit = 100
for i, s in enumerate(searches):
if not s.endswith('.png'):
searches[i] = searches[i] + '.png'
#tsne params
perplexity = float(request.args.get('perplexity', 30.0))
early_exaggeration = float(request.args.get('early_x', 4.0))
learning_rate = float(request.args.get('learning_rate', 1000.0))
metric = request.args.get('metric', 'euclidean')
to_pca = bool(request.args.get('pca', True))
pca_only = bool(request.args.get('pca_only', True))
matches = []
res = {}
print searches
region_level = (region, level)
filenames = all_filenames[region_level]
tile_dict = tile_dicts[region_level]
features = all_features[region_level]
neighbours = knn_trees[region_level]
features_filename = features_filenames[region_level]
if searches is not None:
t_start = time.time()
# makes searches into a singleton list if it isn't already a list
searches = maybe_wrap(searches)
search_features = []
for search in searches:
try:
filename_index = tile_dict[search]
search_feature = features[filename_index]
search_features.append(search_feature)
except KeyError:
pass
# centroid of search_features given
if len(search_features) > 0:
search_features = [np.mean(search_features, axis=0)]
m = time.time()
distances, indices = neighbours.kneighbors(search_features, limit)
print 'Ball tree request time: ' + str(time.time() - m)
similar_features = [features[i] for i in indices[0]]
if pca_only:
reduced_dim = PCA(n_components=2).fit_transform(similar_features)
else:
reduced_dim = FastICA(n_components=2).fit_transform(similar_features)
reduced_dim = reduced_dim/np.max(np.abs(reduced_dim))
# key is 'tsne_pos' as server code still expects 'tsne_pos' as the key
# even though dim. reduction is done with PCA now
matches = [{'distance':dist, 'filename':filenames[i], 'tsne_pos':tuple(tsne_pos)} \
for dist, i, tsne_pos in zip(distances[0].tolist(), indices[0].tolist(), reduced_dim.tolist())]
t_duration = time.time() - t_start
print 'Total duration: ' + str(t_duration)
res = {'duration' : t_duration,
'features_file': features_filename,
'matches': matches,
}
else:
res = {'error':'tile not found'}
else:
res = {'error':'filename param missing'}
return json.dumps(res)
print 'Starting server.'
app.debug = True
app.run(host='0.0.0.0', port=5000, use_reloader=False)