-
-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathDCC.cpp
907 lines (804 loc) · 29.9 KB
/
DCC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/*
* © 2021 Neil McKechnie
* © 2021 Mike S
* © 2021 Fred Decker
* © 2021 Herb Morton
* © 2020-2022 Harald Barth
* © 2020-2021 M Steve Todd
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of DCC-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "DIAG.h"
#include "DCC.h"
#include "DCCWaveform.h"
#ifndef DISABLE_EEPROM
#include "EEStore.h"
#endif
#include "GITHUB_SHA.h"
#include "version.h"
#include "FSH.h"
#include "IODevice.h"
#include "EXRAIL2.h"
#include "CommandDistributor.h"
#include "TrackManager.h"
#include "DCCTimer.h"
// This module is responsible for converting API calls into
// messages to be sent to the waveform generator.
// It has no visibility of the hardware, timers, interrupts
// nor of the waveform issues such as preambles, start bits checksums or cutouts.
//
// Nor should it have to deal with JMRI responsess other than the OK/FAIL
// or cv value returned. I will move that back to the JMRI interface later
//
// The interface to the waveform generator is narrowed down to merely:
// Scheduling a message on the prog or main track using a function
// Obtaining ACKs from the prog track using a function
// There are no volatiles here.
const byte FN_GROUP_1=0x01;
const byte FN_GROUP_2=0x02;
const byte FN_GROUP_3=0x04;
const byte FN_GROUP_4=0x08;
const byte FN_GROUP_5=0x10;
FSH* DCC::shieldName=NULL;
byte DCC::globalSpeedsteps=128;
void DCC::begin() {
StringFormatter::send(&USB_SERIAL,F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA));
#ifndef DISABLE_EEPROM
// Load stuff from EEprom
(void)EEPROM; // tell compiler not to warn this is unused
EEStore::init();
#endif
#ifndef ARDUINO_ARCH_ESP32 /* On ESP32 started in TrackManager::setTrackMode() */
DCCWaveform::begin();
#endif
}
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {
byte speedCode = (tSpeed & 0x7F) + tDirection * 128;
setThrottle2(cab, speedCode);
TrackManager::setDCSignal(cab,speedCode); // in case this is a dcc track on this addr
// retain speed for loco reminders
updateLocoReminder(cab, speedCode );
}
void DCC::setThrottle2( uint16_t cab, byte speedCode) {
uint8_t b[4];
uint8_t nB = 0;
// DIAG(F("setSpeedInternal %d %x"),cab,speedCode);
if (cab > HIGHEST_SHORT_ADDR)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
if (globalSpeedsteps <= 28) {
uint8_t speed128 = speedCode & 0x7F;
uint8_t speed28;
uint8_t code28;
if (speed128 == 0 || speed128 == 1) { // stop or emergency stop
code28 = speed128;
} else {
speed28= (speed128*10+36)/46; // convert 2-127 to 1-28
/*
if (globalSpeedsteps <= 14) // Don't want to do 14 steps, to get F0 there is ugly
code28 = (speed28+3)/2 | (Value of F0); // convert 1-28 to DCC 14 step speed code
else
*/
code28 = (speed28+3)/2 | ( (speed28 & 1) ? 0 : 0b00010000 ); // convert 1-28 to DCC 28 step speed code
}
// Construct command byte from:
// command speed direction
b[nB++] = 0b01000000 | code28 | ((speedCode & 0x80) ? 0b00100000 : 0);
} else { // 128 speedsteps
b[nB++] = SET_SPEED; // 128-step speed control byte
b[nB++] = speedCode; // for encoding see setThrottle
}
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2, byte count) {
// DIAG(F("setFunctionInternal %d %x %x"),cab,byte1,byte2);
byte b[4];
byte nB = 0;
if (cab > HIGHEST_SHORT_ADDR)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
if (byte1!=0) b[nB++] = byte1;
b[nB++] = byte2;
DCCWaveform::mainTrack.schedulePacket(b, nB, count);
}
// returns speed steps 0 to 127 (1 == emergency stop)
// or -1 on "loco not found"
int8_t DCC::getThrottleSpeed(int cab) {
int reg=lookupSpeedTable(cab);
if (reg<0) return -1;
return speedTable[reg].speedCode & 0x7F;
}
// returns speed code byte
// or 128 (speed 0, dir forward) on "loco not found".
uint8_t DCC::getThrottleSpeedByte(int cab) {
int reg=lookupSpeedTable(cab);
if (reg<0)
return 128;
return speedTable[reg].speedCode;
}
// returns 0 to 7 for frequency
uint8_t DCC::getThrottleFrequency(int cab) {
#if defined(ARDUINO_AVR_UNO)
(void)cab;
return 0;
#else
int reg=lookupSpeedTable(cab);
if (reg<0)
return 0; // use default frequency
// shift out first 29 bits so we have the 3 "frequency bits" left
uint8_t res = (uint8_t)(speedTable[reg].functions >>29);
//DIAG(F("Speed table %d functions %l shifted %d"), reg, speedTable[reg].functions, res);
return res;
#endif
}
// returns direction on loco
// or true/forward on "loco not found"
bool DCC::getThrottleDirection(int cab) {
int reg=lookupSpeedTable(cab);
if (reg<0) return true;
return (speedTable[reg].speedCode & 0x80) !=0;
}
// Set function to value on or off
bool DCC::setFn( int cab, int16_t functionNumber, bool on) {
if (cab<=0 ) return false;
if (functionNumber < 0) return false;
if (functionNumber>28) {
//non reminding advanced binary bit set
byte b[5];
byte nB = 0;
if (cab > HIGHEST_SHORT_ADDR)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
if (functionNumber <= 127) {
b[nB++] = 0b11011101; // Binary State Control Instruction short form
b[nB++] = functionNumber | (on ? 0x80 : 0);
}
else {
b[nB++] = 0b11000000; // Binary State Control Instruction long form
b[nB++] = (functionNumber & 0x7F) | (on ? 0x80 : 0); // low order bits and state flag
b[nB++] = functionNumber >>7 ; // high order bits
}
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
// We use the reminder table up to 28 for normal functions.
// We use 29 to 31 for DC frequency as well so up to 28
// are "real" functions and 29 to 31 are frequency bits
// controlled by function buttons
if (functionNumber > 31)
return true;
int reg = lookupSpeedTable(cab);
if (reg<0) return false;
// Take care of functions:
// Set state of function
uint32_t previous=speedTable[reg].functions;
uint32_t funcmask = (1UL<<functionNumber);
if (on) {
speedTable[reg].functions |= funcmask;
} else {
speedTable[reg].functions &= ~funcmask;
}
if (speedTable[reg].functions != previous) {
if (functionNumber <= 28)
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
CommandDistributor::broadcastLoco(reg);
}
return true;
}
// Flip function state (used from withrottle protocol)
void DCC::changeFn( int cab, int16_t functionNumber) {
auto currentValue=getFn(cab,functionNumber);
if (currentValue<0) return; // function not valid for change
setFn(cab,functionNumber, currentValue?false:true);
}
// Report function state (used from withrottle protocol)
// returns 0 false, 1 true or -1 for do not know
int8_t DCC::getFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>31)
return -1; // unknown
int reg = lookupSpeedTable(cab);
if (reg<0)
return -1;
unsigned long funcmask = (1UL<<functionNumber);
return (speedTable[reg].functions & funcmask)? 1 : 0;
}
// Set the group flag to say we have touched the particular group.
// A group will be reminded only if it has been touched.
void DCC::updateGroupflags(byte & flags, int16_t functionNumber) {
byte groupMask;
if (functionNumber<=4) groupMask=FN_GROUP_1;
else if (functionNumber<=8) groupMask=FN_GROUP_2;
else if (functionNumber<=12) groupMask=FN_GROUP_3;
else if (functionNumber<=20) groupMask=FN_GROUP_4;
else groupMask=FN_GROUP_5;
flags |= groupMask;
}
uint32_t DCC::getFunctionMap(int cab) {
if (cab<=0) return 0; // unknown pretend all functions off
int reg = lookupSpeedTable(cab);
return (reg<0)?0:speedTable[reg].functions;
}
// saves DC frequency (0..3) in spare functions 29,30,31
void DCC::setDCFreq(int cab,byte freq) {
if (cab==0 || freq>3) return;
auto reg=lookupSpeedTable(cab,true);
// drop and replace F29,30,31 (top 3 bits)
auto newFunctions=speedTable[reg].functions & 0x1FFFFFFFUL;
if (freq==1) newFunctions |= (1UL<<29); // F29
else if (freq==2) newFunctions |= (1UL<<30); // F30
else if (freq==3) newFunctions |= (1UL<<31); // F31
if (newFunctions==speedTable[reg].functions) return; // no change
speedTable[reg].functions=newFunctions;
CommandDistributor::broadcastLoco(reg);
}
void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
// onoff is tristate:
// 0 => send off packet
// 1 => send on packet
// >1 => send both on and off packets.
// An accessory has an address, 4 ports and 2 gates (coils) each. That's how
// the initial decoders were orgnized and that influenced how the DCC
// standard was made.
#ifdef DIAG_IO
DIAG(F("DCC::setAccessory(%d,%d,%d)"), address, port, gate);
#endif
// use masks to detect wrong values and do nothing
if(address != (address & 511))
return;
if(port != (port & 3))
return;
byte b[2];
// first byte is of the form 10AAAAAA, where AAAAAA represent 6 least signifcant bits of accessory address
// second byte is of the form 1AAACPPG, where C is 1 for on, PP the ports 0 to 3 and G the gate (coil).
b[0] = address % 64 + 128;
b[1] = ((((address / 64) % 8) << 4) + (port % 4 << 1) + gate % 2) ^ 0xF8;
if (onoff != 0) {
DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat on packet three times
#if defined(EXRAIL_ACTIVE)
RMFT2::activateEvent(address<<2|port,gate);
#endif
}
if (onoff != 1) {
b[1] &= ~0x08; // set C to 0
DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat off packet three times
}
}
bool DCC::setExtendedAccessory(int16_t address, int16_t value, byte repeats) {
/* From https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf
The Extended Accessory Decoder Control Packet is included for the purpose of transmitting aspect control to signal
decoders or data bytes to more complex accessory decoders. Each signal head can display one aspect at a time.
{preamble} 0 10AAAAAA 0 0AAA0AA1 0 000XXXXX 0 EEEEEEEE 1
XXXXX is for a single head. A value of 00000 for XXXXX indicates the absolute stop aspect. All other aspects
represented by the values for XXXXX are determined by the signaling system used and the prototype being
modeled.
From https://normen.railcommunity.de/RCN-213.pdf:
More information is in RCN-213 about how the address bits are organized.
preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- ....
Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX
Die Adresse f�r den ersten erweiterten Zubeh�rdecoder ist wie bei den einfachen
Zubeh�rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
Anwenderdialogen als Adresse 1 dargestellt.
This means that the first address shown to the user as "1" is mapped
to internal address 4.
Note that the Basic accessory format mentions "By convention these
bits (bits 4-6 of the second data byte) are in ones complement" but
this note is absent from the advanced packet description. The
english translation does not mention that the address format for
the advanced packet follows the one for the basic packet but
according to the RCN-213 this is the case.
We allow for addresses from -3 to 2047-3 as that allows to address the
whole range of the 11 bits sent to track.
*/
if ((address > 2044) || (address < -3)) return false; // 2047-3, 11 bits but offset 3
if (value != (value & 0x1F)) return false; // 5 bits
address+=3; // +3 offset according to RCN-213
byte b[3];
b[0]= 0x80 // bits always on
| ((address>>2) & 0x3F); // shift out 2, mask out used bits
b[1]= 0x01 // bits always on
| (((~(address>>8)) & 0x07)<<4) // shift out 8, invert, mask 3 bits, shift up 4
| ((address & 0x03)<<1); // mask 2 bits, shift up 1
b[2]=value;
DCCWaveform::mainTrack.schedulePacket(b, sizeof(b), repeats);
return true;
}
//
// writeCVByteMain: Write a byte with PoM on main. This writes
// the 5 byte sized packet to implement this DCC function
//
void DCC::writeCVByteMain(int cab, int cv, byte bValue) {
byte b[5];
byte nB = 0;
if (cab > HIGHEST_SHORT_ADDR)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = bValue;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
//
// writeCVBitMain: Write a bit of a byte with PoM on main. This writes
// the 5 byte sized packet to implement this DCC function
//
void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) {
byte b[5];
byte nB = 0;
bValue = bValue % 2;
bNum = bNum % 8;
if (cab > HIGHEST_SHORT_ADDR)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
FSH* DCC::getMotorShieldName() {
return shieldName;
}
const ackOp FLASH WRITE_BIT0_PROG[] = {
BASELINE,
W0,WACK,
V0, WACK, // validate bit is 0
ITC1, // if acked, callback(1)
CALLFAIL // callback (-1)
};
const ackOp FLASH WRITE_BIT1_PROG[] = {
BASELINE,
W1,WACK,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
CALLFAIL // callback (-1)
};
const ackOp FLASH VERIFY_BIT0_PROG[] = {
BASELINE,
V0, WACK, // validate bit is 0
ITC0, // if acked, callback(0)
V1, WACK, // validate bit is 1
ITC1,
CALLFAIL // callback (-1)
};
const ackOp FLASH VERIFY_BIT1_PROG[] = {
BASELINE,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
V0, WACK,
ITC0,
CALLFAIL // callback (-1)
};
const ackOp FLASH READ_BIT_PROG[] = {
BASELINE,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
V0, WACK, // validate bit is zero
ITC0, // if acked callback 0
CALLFAIL // bit not readable
};
const ackOp FLASH WRITE_BYTE_PROG[] = {
BASELINE,
WB,WACK,ITC1, // Write and callback(1) if ACK
// handle decoders that dont ack a write
VB,WACK,ITC1, // validate byte and callback(1) if correct
CALLFAIL // callback (-1)
};
const ackOp FLASH VERIFY_BYTE_PROG[] = {
BASELINE,
BIV, // ackManagerByte initial value
VB,WACK, // validate byte
ITCB, // if ok callback value
STARTMERGE, //clear bit and byte values ready for merge pass
// each bit is validated against 0 and the result inverted in MERGE
// this is because there tend to be more zeros in cv values than ones.
// There is no need for one validation as entire byte is validated at the end
V0, WACK, MERGE, // read and merge first tested bit (7)
ITSKIP, // do small excursion if there was no ack
SETBIT,(ackOp)7,
V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7)
SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6)
SKIPTARGET,
V0, WACK, MERGE, // read and merge second tested bit (6)
V0, WACK, MERGE, // read and merge third tested bit (5) ...
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCBV, // verify merged byte and return it if acked ok - with retry report
CALLFAIL };
const ackOp FLASH READ_CV_PROG[] = {
BASELINE,
STARTMERGE, //clear bit and byte values ready for merge pass
// each bit is validated against 0 and the result inverted in MERGE
// this is because there tend to be more zeros in cv values than ones.
// There is no need for one validation as entire byte is validated at the end
V0, WACK, MERGE, // read and merge first tested bit (7)
ITSKIP, // do small excursion if there was no ack
SETBIT,(ackOp)7,
V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7)
SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6)
SKIPTARGET,
V0, WACK, MERGE, // read and merge second tested bit (6)
V0, WACK, MERGE, // read and merge third tested bit (5) ...
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB, // verify merged byte and return it if acked ok
CALLFAIL }; // verification failed
const ackOp FLASH LOCO_ID_PROG[] = {
BASELINE,
// first check cv20 for extended addressing
SETCV, (ackOp)20, // CV 19 is extended
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // skip past extended section if cv20 is zero
// read cv20 and 19 and merge
STARTMERGE, // Setup to read cv 20
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKSKIP, // bad read of cv20, assume its 0
STASHLOCOID, // keep cv 20 until we have cv19 as well.
SETCV, (ackOp)19,
STARTMERGE, // Setup to read cv 19
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // cant recover if cv 19 unreadable
COMBINE1920, // Combile byte with stash and callback
// end of advanced 20,19 check
SKIPTARGET,
SETCV, (ackOp)19, // CV 19 is consist setting
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // ignore consist if cv19 is zero (no consist)
SETBYTE, (ackOp)128,
VB, WACK, ITSKIP, // ignore consist if cv19 is 128 (no consist, direction bit set)
STARTMERGE, // Setup to read cv 19
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB7, // return 7 bits only, No_ACK means CV19 not supported so ignore it
SKIPTARGET, // continue here if CV 19 is zero or fails all validation
SETCV,(ackOp)29,
SETBIT,(ackOp)5,
V0, WACK, ITSKIP, // Skip to SKIPTARGET if bit 5 of CV29 is zero
// Long locoid
SETCV, (ackOp)17, // CV 17 is part of locoid
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
STASHLOCOID, // keep stashed cv 17 for later
// Read 2nd part from CV 18
SETCV, (ackOp)18,
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
COMBINELOCOID, // Combile byte with stash to make long locoid and callback
// ITSKIP Skips to here if CV 29 bit 5 was zero. so read CV 1 and return that
SKIPTARGET,
SETCV, (ackOp)1,
STARTMERGE,
SETBIT, (ackOp)6, // skip over first bit as we know its a zero
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB, // verify merged byte and callback
CALLFAIL
};
const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv19 support
// Turn off long address flag
SETCV,(ackOp)29,
SETBIT,(ackOp)5,
W0,WACK,
V0,WACK,NAKFAIL,
SETCV, (ackOp)1,
SETBYTEL, // low byte of word
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
VB,WACK,ITC1, // Some decoders do not ack and need verify
CALLFAIL
};
// for CONSIST_ID_PROG the 20,19 values are already calculated
const ackOp FLASH CONSIST_ID_PROG[] = {
BASELINE,
SETCV,(ackOp)20,
SETBYTEH, // high byte to CV 20
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTEL, // low byte of word
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
VB,WACK,ITC1, // Some decoders do not ack and need verify
CALLFAIL
};
const ackOp FLASH LONG_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore decoder without cv19 support
// Turn on long address flag cv29 bit 5
SETCV,(ackOp)29,
SETBIT,(ackOp)5,
W1,WACK,
V1,WACK,NAKFAIL,
// Store high byte of address in cv 17
SETCV, (ackOp)17,
SETBYTEH, // high byte of word
WB,WACK, // do write
ITSKIP, // if ACK, jump to SKIPTARGET
VB,WACK, // try verify instead
ITSKIP, // if ACK, jump to SKIPTARGET
CALLFAIL, // if still here, fail
SKIPTARGET,
// store
SETCV, (ackOp)18,
SETBYTEL, // low byte of word
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
VB,WACK,ITC1, // Some decoders do not ack and need verify
CALLFAIL
};
void DCC::writeCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) {
DCCACK::Setup(cv, byteValue, WRITE_BYTE_PROG, callback);
}
void DCC::writeCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else DCCACK::Setup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback);
}
void DCC::verifyCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) {
DCCACK::Setup(cv, byteValue, VERIFY_BYTE_PROG, callback);
}
void DCC::verifyCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else DCCACK::Setup(cv, bitNum, bitValue?VERIFY_BIT1_PROG:VERIFY_BIT0_PROG, callback);
}
void DCC::readCVBit(int16_t cv, byte bitNum, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else DCCACK::Setup(cv, bitNum,READ_BIT_PROG, callback);
}
void DCC::readCV(int16_t cv, ACK_CALLBACK callback) {
DCCACK::Setup(cv, 0,READ_CV_PROG, callback);
}
void DCC::getLocoId(ACK_CALLBACK callback) {
DCCACK::Setup(0,0, LOCO_ID_PROG, callback);
}
void DCC::setLocoId(int id,ACK_CALLBACK callback) {
if (id<1 || id>10239) { //0x27FF according to standard
callback(-1);
return;
}
if (id<=HIGHEST_SHORT_ADDR)
DCCACK::Setup(id, SHORT_LOCO_ID_PROG, callback);
else
DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
}
void DCC::setConsistId(int id,bool reverse,ACK_CALLBACK callback) {
if (id<0 || id>10239) { //0x27FF according to standard
callback(-1);
return;
}
byte cv20;
byte cv19;
if (id<=HIGHEST_SHORT_ADDR) {
cv19=id;
cv20=0;
}
else {
cv20=id/100;
cv19=id%100;
}
if (reverse) cv19|=0x80;
DCCACK::Setup((cv20<<8)|cv19, CONSIST_ID_PROG, callback);
}
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
setThrottle2(cab,1); // ESTOP this loco if still on track
int reg=lookupSpeedTable(cab, false);
if (reg>=0) {
speedTable[reg].loco=0;
setThrottle2(cab,1); // ESTOP if this loco still on track
CommandDistributor::broadcastForgetLoco(cab);
}
}
void DCC::forgetAllLocos() { // removes all speed reminders
setThrottle2(0,1); // ESTOP all locos still on track
for (int i=0;i<MAX_LOCOS;i++) {
if (speedTable[i].loco) CommandDistributor::broadcastForgetLoco(speedTable[i].loco);
speedTable[i].loco=0;
}
}
byte DCC::loopStatus=0;
void DCC::loop() {
TrackManager::loop(); // power overload checks
issueReminders();
}
void DCC::issueReminders() {
// if the main track transmitter still has a pending packet, skip this time around.
if (!DCCWaveform::mainTrack.isReminderWindowOpen()) return;
// Move to next loco slot. If occupied, send a reminder.
int reg = lastLocoReminder+1;
if (reg > highestUsedReg) reg = 0; // Go to start of table
if (speedTable[reg].loco > 0) {
// have found loco to remind
if (issueReminder(reg))
lastLocoReminder = reg;
} else
lastLocoReminder = reg;
}
bool DCC::issueReminder(int reg) {
unsigned long functions=speedTable[reg].functions;
int loco=speedTable[reg].loco;
byte flags=speedTable[reg].groupFlags;
switch (loopStatus) {
case 0:
// DIAG(F("Reminder %d speed %d"),loco,speedTable[reg].speedCode);
setThrottle2(loco, speedTable[reg].speedCode);
break;
case 1: // remind function group 1 (F0-F4)
if (flags & FN_GROUP_1)
#ifndef DISABLE_FUNCTION_REMINDERS
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),0); // 100D DDDD
#else
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),2);
flags&= ~FN_GROUP_1; // dont send them again
#endif
break;
case 2: // remind function group 2 F5-F8
if (flags & FN_GROUP_2)
#ifndef DISABLE_FUNCTION_REMINDERS
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),0); // 1011 DDDD
#else
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),2);
flags&= ~FN_GROUP_2; // dont send them again
#endif
break;
case 3: // remind function group 3 F9-F12
if (flags & FN_GROUP_3)
#ifndef DISABLE_FUNCTION_REMINDERS
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),0); // 1010 DDDD
#else
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),2);
flags&= ~FN_GROUP_3; // dont send them again
#endif
break;
case 4: // remind function group 4 F13-F20
if (flags & FN_GROUP_4)
setFunctionInternal(loco,222, ((functions>>13)& 0xFF),2);
flags&= ~FN_GROUP_4; // dont send them again
break;
case 5: // remind function group 5 F21-F28
if (flags & FN_GROUP_5)
setFunctionInternal(loco,223, ((functions>>21)& 0xFF),2);
flags&= ~FN_GROUP_5; // dont send them again
break;
}
loopStatus++;
// if we reach status 6 then this loco is done so
// reset status to 0 for next loco and return true so caller
// moves on to next loco.
if (loopStatus>5) loopStatus=0;
return loopStatus==0;
}
///// Private helper functions below here /////////////////////
byte DCC::cv1(byte opcode, int cv) {
cv--;
return (highByte(cv) & (byte)0x03) | opcode;
}
byte DCC::cv2(int cv) {
cv--;
return lowByte(cv);
}
int DCC::lookupSpeedTable(int locoId, bool autoCreate) {
// determine speed reg for this loco
int firstEmpty = MAX_LOCOS;
int reg;
for (reg = 0; reg < MAX_LOCOS; reg++) {
if (speedTable[reg].loco == locoId) break;
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg;
}
// return -1 if not found and not auto creating
if (reg== MAX_LOCOS && !autoCreate) return -1;
if (reg == MAX_LOCOS) reg = firstEmpty;
if (reg >= MAX_LOCOS) {
DIAG(F("Too many locos"));
return -1;
}
if (reg==firstEmpty){
speedTable[reg].loco = locoId;
speedTable[reg].speedCode=128; // default direction forward
speedTable[reg].groupFlags=0;
speedTable[reg].functions=0;
}
if (reg > highestUsedReg) highestUsedReg = reg;
return reg;
}
void DCC::updateLocoReminder(int loco, byte speedCode) {
if (loco==0) {
// broadcast stop/estop but dont change direction
for (int reg = 0; reg <= highestUsedReg; reg++) {
if (speedTable[reg].loco==0) continue;
byte newspeed=(speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f);
if (speedTable[reg].speedCode != newspeed) {
speedTable[reg].speedCode = newspeed;
CommandDistributor::broadcastLoco(reg);
}
}
return;
}
// determine speed reg for this loco
int reg=lookupSpeedTable(loco);
if (reg>=0 && speedTable[reg].speedCode!=speedCode) {
speedTable[reg].speedCode = speedCode;
CommandDistributor::broadcastLoco(reg);
}
}
DCC::LOCO DCC::speedTable[MAX_LOCOS];
int DCC::lastLocoReminder = 0;
int DCC::highestUsedReg = 0;
void DCC::displayCabList(Print * stream) {
int used=0;
for (int reg = 0; reg <= highestUsedReg; reg++) {
if (speedTable[reg].loco>0) {
used ++;
StringFormatter::send(stream,F("cab=%d, speed=%d, dir=%c \n"),
speedTable[reg].loco, speedTable[reg].speedCode & 0x7f,(speedTable[reg].speedCode & 0x80) ? 'F':'R');
}
}
StringFormatter::send(stream,F("Used=%d, max=%d\n"),used,MAX_LOCOS);
}