-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseminar2_task1.R
441 lines (326 loc) · 18.5 KB
/
seminar2_task1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
library(ggplot2)
library(gridExtra)
library(tidyr)
library(reshape2)
setwd("D:/Code/R_code/seminar2")
data <- read.csv("data_task1.csv")
#######################################################
# histogram
plot_memory <- ggplot(data, aes(x = MEMORY, fill = as.factor(N_LABEL))) +
geom_histogram(position = "identity", bins = 20, alpha = 0.5) +
labs(title = "MEMORY Distribution", x = "MEMORY", fill = "N_LABEL") +
theme_minimal()
plot_execfunc <- ggplot(data, aes(x = EXECFUNC, fill = as.factor(N_LABEL))) +
geom_histogram(position = "identity", bins = 20, alpha = 0.5) +
labs(title = "EXECFUNC Distribution", x = "EXECFUNC", fill = "N_LABEL") +
theme_minimal()
plot_procspeed <- ggplot(data, aes(x = PROCSPEED, fill = as.factor(N_LABEL))) +
geom_histogram(position = "identity", bins = 20, alpha = 0.5) +
labs(title = "PROCSPEED Distribution", x = "PROCSPEED", fill = "N_LABEL") +
theme_minimal()
p <- grid.arrange(plot_memory, plot_execfunc, plot_procspeed, ncol = 3)
ggsave("Histogram.jpg", plot = p,
width = 3200/300, height = 1200/300, units = "in", dpi = 300)
print(p)
#######################################################
# boxplot
plot_memory <- ggplot(data, aes(x = as.factor(N_LABEL), y = MEMORY, fill = as.factor(N_LABEL))) +
geom_boxplot(alpha = 0.7) +
labs(title = "MEMORY", x = "N_LABEL", y = "MEMORY", fill = "N_LABEL") +
theme_minimal()
plot_execfunc <- ggplot(data, aes(x = as.factor(N_LABEL), y = EXECFUNC, fill = as.factor(N_LABEL))) +
geom_boxplot(alpha = 0.7) +
labs(title = "EXECFUNC", x = "N_LABEL", y = "EXECFUNC", fill = "N_LABEL") +
theme_minimal()
plot_procspeed <- ggplot(data, aes(x = as.factor(N_LABEL), y = PROCSPEED, fill = as.factor(N_LABEL))) +
geom_boxplot(alpha = 0.7) +
labs(title = "PROCSPEED", x = "N_LABEL", y = "PROCSPEED", fill = "N_LABEL") +
theme_minimal()
p <- grid.arrange(plot_memory, plot_execfunc, plot_procspeed, ncol = 3)
ggsave("Boxplot.jpg", plot = p,
width = 3200/300, height = 1200/300, units = "in", dpi = 300)
print(p)
#######################################################
# try sum of these three value above, nothing happened
data$total_score <- rowSums(data[, c("MEMORY", "EXECFUNC", "PROCSPEED")], na.rm = TRUE)
plot_total <- ggplot(data, aes(x = total_score, fill = as.factor(N_LABEL))) +
geom_histogram(position = "identity", bins = 20, alpha = 0.5) +
labs(title = "Total Score Distribution", x = "Total Score", fill = "N_LABEL") +
theme_minimal()
print(plot_total)
#######################################################
# chi-squared test
data$N_LABEL <- as.factor(data$N_LABEL)
variables <- c("SEX", "HYPERTENSION", "DIABETES", "ATRIALFIBR", "INFARCTION", "AMYLOIDVIS")
for (var in variables) {
contingency_table <- table(data$N_LABEL, data[[var]])
chisq_result <- chisq.test(contingency_table)
cat("Contingency table for", var, ":\n")
print(contingency_table)
cat("\n")
chisq_result <- chisq.test(contingency_table)
cat("Chi-squared test for", var, ":\n")
print(chisq_result)
cat("\n")
}
#######################################################
# fisher test replacing the chi-squared test to deal with the small frequency
data$N_LABEL <- as.factor(data$N_LABEL)
variables <- c("SEX", "HYPERTENSION", "DIABETES", "ATRIALFIBR", "INFARCTION", "AMYLOIDVIS")
for (var in variables) {
contingency_table <- table(data$N_LABEL, data[[var]])
#cat("Contingency table for", var, ":\n")
#print(contingency_table)
#cat("\n")
fisher_result <- fisher.test(contingency_table)
cat("Fisher's exact test for", var, ":\n")
print(fisher_result)
cat("\n")
}
#######################################################
# Wilcoxon rank-sum test
variables <- c("AGE", "EDUCATION", "MMSE", "CERAD", "PASTCAQ", "HANDGRIP", "MUSCLE", "SPPB",
"MNA", "BMI", "CRP", "LEUK", "BPSYS", "BPDIA", "HBA1C", "CHOLESTEROL",
"WMHVOL", "HIPPOVOL", "AMYLOIDBIND")
results <- data.frame(Variable = character(), p.value = numeric(), stringsAsFactors = FALSE)
for (var in variables) {
test_result <- wilcox.test(data[[var]] ~ data$N_LABEL)
results <- rbind(results, data.frame(Variable = var, p.value = test_result$p.value))
}
print(results)
#######################################################
# Multiple Testing Correction
results <- data.frame(
Variable = c("AGE", "EDUCATION", "MMSE", "CERAD", "PASTCAQ", "HANDGRIP", "MUSCLE",
"SPPB", "MNA", "BMI", "CRP", "LEUK", "BPSYS", "BPDIA", "HBA1C",
"CHOLESTEROL", "WMHVOL", "HIPPOVOL", "AMYLOIDBIND"),
p.value = c(1.937940e-05, 1.856402e-01, 1.162747e-12, 5.055813e-14, 8.234381e-01,
1.122971e-04, 5.138574e-01, 7.370349e-02, 4.660691e-04, 5.860135e-01,
5.972583e-02, 3.994737e-02, 5.394276e-01, 5.213018e-01, 1.624442e-01,
2.614635e-01, 1.560449e-02, 5.087277e-06, 3.661085e-04)
)
# cal Bonferroni corrections
results$Bonferroni_p <- p.adjust(results$p.value, method = "bonferroni")
# cal BH corrections
results$BH_p <- p.adjust(results$p.value, method = "BH")
results$Significant_Bonferroni <- results$Bonferroni_p < 0.05
results$Significant_BH <- results$BH_p < 0.05
print(results)
#######################################################
# Visiualization
results <- data.frame(
Variable = c("AGE", "EDUCATION", "MMSE", "CERAD", "PASTCAQ", "HANDGRIP", "MUSCLE",
"SPPB", "MNA", "BMI", "CRP", "LEUK", "BPSYS", "BPDIA", "HBA1C",
"CHOLESTEROL", "WMHVOL", "HIPPOVOL", "AMYLOIDBIND"),
P_value = c(1.937940e-05, 1.856402e-01, 1.162747e-12, 5.055813e-14, 8.234381e-01,
1.122971e-04, 5.138574e-01, 7.370349e-02, 4.660691e-04, 5.860135e-01,
5.972583e-02, 3.994737e-02, 5.394276e-01, 5.213018e-01, 1.624442e-01,
2.614635e-01, 1.560449e-02, 5.087277e-06, 3.661085e-04),
Bonferroni_p = c(3.682086e-04, 1.000000e+00, 2.209219e-11, 9.606045e-13, 1.000000e+00,
2.133645e-03, 1.000000e+00, 1.000000e+00, 8.855313e-03, 1.000000e+00,
1.000000e+00, 7.590000e-01, 1.000000e+00, 1.000000e+00, 1.000000e+00,
1.000000e+00, 2.964853e-01, 9.665826e-05, 6.956061e-03),
BH_p = c(9.205215e-05, 2.713203e-01, 1.104610e-11, 9.606045e-13, 8.234381e-01,
4.267290e-04, 6.028897e-01, 1.273060e-01, 1.265045e-03, 6.185698e-01,
1.134791e-01, 8.433334e-02, 6.028897e-01, 6.028897e-01, 2.572033e-01,
3.548433e-01, 3.706066e-02, 3.221942e-05, 1.159344e-03)
)
results_melted <- melt(results, id.vars = "Variable", variable.name = "Type", value.name = "P_value")
results_melted$Significant <- ifelse(results_melted$P_value < 0.05, "Significant", "Not Significant")
ggplot(results_melted, aes(x = Type, y = Variable, fill = Significant)) +
geom_tile(color = "white") +
scale_fill_manual(values = c("Significant" = "#90EE90", "Not Significant" = "#FF6347")) +
geom_text(aes(label = sprintf("%.2e", P_value)), color = "black", size = 6) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 0, vjust = 0.5, hjust = 0.5, size = 14),
axis.text.y = element_text(size = 14),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.title = element_text(hjust = 0.5, size = 18),
legend.text = element_text(size = 14),
legend.title = element_text(size = 16)) +
labs(title = "P-values with Bonferroni and BH Adjustments")
#######################################################
# significant variables box plots
variables <- c("AGE", "MMSE", "CERAD", "HANDGRIP", "MNA", "LEUK", "WMHVOL", "HIPPOVOL", "AMYLOIDBIND")
plots <- list()
# 创建 boxplot
for (var in variables) {
p <- ggplot(data, aes(x = as.factor(N_LABEL), y = get(var), fill = as.factor(N_LABEL))) +
geom_boxplot() +
labs(title = var, x = "N_LABEL", y = var) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5), # 标题居中
axis.text = element_text(size = 10), # 坐标轴标签字体大小
axis.title = element_text(size = 14), # 坐标轴标题字体大小
legend.position = "none") # 隐藏图例
plots[[var]] <- p
}
# 保存图片并调整尺寸
png("boxplot_grid.png", width = 12, height = 18, units = "in", res = 300) # 设置图像大小和分辨率
grid.arrange(grobs = plots, ncol = 3)
dev.off()
#######################################################
# unsignificant variables box plots
variables_non_significant <- c("EDUCATION", "PASTCAQ", "MUSCLE", "SPPB", "BMI", "CRP", "BPSYS", "BPDIA", "HBA1C", "CHOLESTEROL")
# 创建 boxplot
plots_non_significant <- lapply(variables_non_significant, function(var) {
ggplot(data, aes(x = as.factor(N_LABEL), y = get(var), fill = as.factor(N_LABEL))) +
geom_boxplot() +
labs(title = var, x = "N_LABEL", y = var) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5), # 标题居中
axis.text = element_text(size = 10), # 坐标轴标签字体大小
axis.title = element_text(size = 14), # 坐标轴标题字体大小
legend.position = "none") # 隐藏图例
})
# 保存图片并调整尺寸
png("non_significant_boxplot_grid.png", width = 12, height = 24, units = "in", res = 300) # 设置图像大小和分辨率
grid.arrange(grobs = plots_non_significant, ncol = 3, nrow = 4) # 指定 4 行
dev.off()
#######################################################
# Correlation Matrix
library(corrplot)
library(reshape2)
library(ggplot2)
data_subset <- data[, !(names(data) %in% c("SEX", "HYPERTENSION", "DIABETES",
"ATRIALFIBR", "INFARCTION",
"AMYLOIDVIS", "N_LABEL",
"MEMORY", "EXECFUNC", "PROCSPEED"))]
cor_matrix <- cor(data_subset)
print(cor_matrix)
jpeg("correlation_matrix.jpg", width = 1200, height = 1200, units = "px", quality = 300)
par(oma = c(4, 4, 4, 4))
p_correlation <- corrplot(cor_matrix,
method = "color",
tl.cex = 1.5,
number.cex = 1.7,
addCoef.col = "black",
cl.pos = "n",
tl.col = "black",
tl.pos = "t")
dev.off()
cor_matrix_melted <- melt(cor_matrix, varnames = c("Variable1", "Variable2"))
ggplot(cor_matrix_melted, aes(x = Variable1, y = Variable2, fill = value)) +
geom_tile() +
scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0) +
geom_text(aes(label = sprintf("%.2f", value)), vjust = 1, color = "black", size = 3) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1, size = 8),
axis.text.y = element_text(size = 8),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
labs(title = "Correlation Matrix") +
coord_fixed()
#######################################################
# Linear regression
# 对MEMORY分数进行线性回归
model_memory <- lm(MEMORY ~ N_LABEL + AGE + SEX + EDUCATION + MMSE + CERAD + HYPERTENSION + DIABETES + ATRIALFIBR + INFARCTION +
AMYLOIDVIS + PASTCAQ + HANDGRIP + MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA +
HBA1C + CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
summary(model_memory)
# 对EXECFUNC分数进行线性回归
model_execfunc <- lm(EXECFUNC ~ N_LABEL + AGE + SEX + EDUCATION + MMSE + CERAD + HYPERTENSION + DIABETES + ATRIALFIBR + INFARCTION +
AMYLOIDVIS + PASTCAQ + HANDGRIP + MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA +
HBA1C + CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
summary(model_execfunc)
# 对PROCSPEED分数进行线性回归
model_procspeed <- lm(PROCSPEED ~ N_LABEL + AGE + SEX + EDUCATION + MMSE + CERAD + HYPERTENSION + DIABETES + ATRIALFIBR + INFARCTION +
AMYLOIDVIS + PASTCAQ + HANDGRIP + MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA +
HBA1C + CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
summary(model_procspeed)
#######################################################
# Linear regression without irrelated bool variables
# 对MEMORY分数进行线性回归
model_memory <- lm(MEMORY ~ MUSCLE + SPPB + AGE + MMSE + CERAD + HANDGRIP + MNA + LEUK + WMHVOL + HIPPOVOL + AMYLOIDBIND + ATRIALFIBR, data = data)
summary(model_memory)
# 对EXECFUNC分数进行线性回归
model_execfunc <- lm(EXECFUNC ~ AGE + MMSE + CERAD + HANDGRIP + MNA + LEUK + WMHVOL + HIPPOVOL + AMYLOIDBIND + ATRIALFIBR, data = data)
summary(model_execfunc)
# 对PROCSPEED分数进行线性回归
model_procspeed <- lm(PROCSPEED ~ AGE + MMSE + CERAD + HANDGRIP + MNA + LEUK + WMHVOL + HIPPOVOL + AMYLOIDBIND + ATRIALFIBR, data = data)
summary(model_procspeed)
#######################################################
# AIC
full_model_memory <- lm(MEMORY ~ N_LABEL + AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
optimized_model_memory <- step(full_model_memory, direction = "both", trace = FALSE)
summary(optimized_model_memory)
full_model_execfunc <- lm(EXECFUNC ~ N_LABEL + AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
optimized_model_execfunc <- step(full_model_execfunc, direction = "both", trace = FALSE)
summary(optimized_model_execfunc)
full_model_procspeed <- lm(PROCSPEED ~ N_LABEL + AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
optimized_model_procspeed <- step(full_model_procspeed, direction = "both", trace = FALSE)
summary(optimized_model_procspeed)
#######################################################
# Linear regression without irrelated bool variables
# 对MEMORY分数进行线性回归
model_memory <- lm(MEMORY ~ MUSCLE + SPPB + MNA + HBA1C + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
summary(model_memory)
# 对EXECFUNC分数进行线性回归
model_execfunc <- lm(EXECFUNC ~ MUSCLE + SPPB + MNA + WMHVOL + HIPPOVOL, data = data)
summary(model_execfunc)
# 对PROCSPEED分数进行线性回归
model_procspeed <- lm(PROCSPEED ~ N_LABEL + CERAD + SPPB + MNA + BMI + CRP + LEUK + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
summary(model_procspeed)
#######################################################
# AIC again
full_model_memory <- lm(MEMORY ~ MUSCLE + SPPB + MNA + HBA1C + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
optimized_model_memory <- step(full_model_memory, direction = "both", trace = FALSE)
summary(optimized_model_memory)
full_model_execfunc <- lm(EXECFUNC ~ MUSCLE + SPPB + MNA + WMHVOL + HIPPOVOL, data = data)
optimized_model_execfunc <- step(full_model_execfunc, direction = "both", trace = FALSE)
summary(optimized_model_execfunc)
full_model_procspeed <- lm(PROCSPEED ~ N_LABEL + CERAD + SPPB + MNA + BMI + CRP + LEUK + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = data)
optimized_model_procspeed <- step(full_model_procspeed, direction = "both", trace = FALSE)
summary(optimized_model_procspeed)
# 将数据按N_LABEL分组
normal_data <- subset(data, N_LABEL == 0)
impaired_data <- subset(data, N_LABEL == 1)
# 对认知正常组进行模型优化
full_model_memory_normal <- lm(MEMORY ~ AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = normal_data)
optimized_model_memory_normal <- step(full_model_memory_normal, direction = "both", trace = FALSE)
summary(optimized_model_memory_normal)
# 对认知受损组进行模型优化
full_model_memory_impaired <- lm(MEMORY ~ AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = impaired_data)
optimized_model_memory_impaired <- step(full_model_memory_impaired, direction = "both", trace = FALSE)
summary(optimized_model_memory_impaired)
# 对EXECFUNC模型执行同样的操作
# 认知正常组
full_model_execfunc_normal <- lm(EXECFUNC ~ AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = normal_data)
optimized_model_execfunc_normal <- step(full_model_execfunc_normal, direction = "both", trace = FALSE)
summary(optimized_model_execfunc_normal)
# 认知受损组
full_model_execfunc_impaired <- lm(EXECFUNC ~ AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = impaired_data)
optimized_model_execfunc_impaired <- step(full_model_execfunc_impaired, direction = "both", trace = FALSE)
summary(optimized_model_execfunc_impaired)
# 对PROCSPEED模型执行同样的操作
# 认知正常组
full_model_procspeed_normal <- lm(PROCSPEED ~ AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = normal_data)
optimized_model_procspeed_normal <- step(full_model_procspeed_normal, direction = "both", trace = FALSE)
summary(optimized_model_procspeed_normal)
# 认知受损组
full_model_procspeed_impaired <- lm(PROCSPEED ~ AGE + EDUCATION + MMSE + CERAD + PASTCAQ + HANDGRIP +
MUSCLE + SPPB + MNA + BMI + CRP + LEUK + BPSYS + BPDIA + HBA1C +
CHOLESTEROL + WMHVOL + HIPPOVOL + AMYLOIDBIND, data = impaired_data)
optimized_model_procspeed_impaired <- step(full_model_procspeed_impaired, direction = "both", trace = FALSE)
summary(optimized_model_procspeed_impaired)