We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ep_rew_mean
MountainCarContinuous-v0
PPO
import gymnasium as gym from stable_baselines3 import PPO env = gym.make("MountainCarContinuous-v0", render_mode="human") model = PPO("MlpPolicy", env, verbose=1) model.learn(total_timesteps=10_000) vec_env = model.get_env() obs = vec_env.reset() for i in range(1000): action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = vec_env.step(action) vec_env.render() # VecEnv resets automatically # if done: # obs = env.reset() env.close()
Using cpu device Wrapping the env with a `Monitor` wrapper Wrapping the env in a DummyVecEnv. --------------------------------- | rollout/ | | | ep_len_mean | 999 | | ep_rew_mean | -51.2 | | time/ | | | fps | 28 | | iterations | 1 | | time_elapsed | 72 | | total_timesteps | 2048 | --------------------------------- ----------------------------------------- | rollout/ | | | ep_len_mean | 999 | | ep_rew_mean | -49.8 | | time/ | | | fps | 28 | | iterations | 2 | | time_elapsed | 143 | | total_timesteps | 4096 | | train/ | | | approx_kl | 0.007122389 | | clip_fraction | 0.0244 | | clip_range | 0.2 | | entropy_loss | -1.37 | | explained_variance | -0.00725 | | learning_rate | 0.0003 | | loss | 0.000856 | | n_updates | 10 | | policy_gradient_loss | -0.0116 | | std | 0.916 | | value_loss | 0.0665 | ----------------------------------------- ------------------------------------------ | rollout/ | | | ep_len_mean | 999 | | ep_rew_mean | -48 | | time/ | | | fps | 28 | | iterations | 3 | | time_elapsed | 213 | | total_timesteps | 6144 | | train/ | | | approx_kl | 0.0068389685 | | clip_fraction | 0.026 | | clip_range | 0.2 | | entropy_loss | -1.29 | | explained_variance | 0.0406 | | learning_rate | 0.0003 | | loss | -0.0138 | | n_updates | 20 | | policy_gradient_loss | -0.0107 | | std | 0.844 | | value_loss | 0.0323 | ------------------------------------------ ---------------------------------------- | rollout/ | | | ep_len_mean | 999 | | ep_rew_mean | -46.4 | | time/ | | | fps | 28 | | iterations | 4 | | time_elapsed | 284 | | total_timesteps | 8192 | | train/ | | | approx_kl | 0.00781654 | | clip_fraction | 0.03 | | clip_range | 0.2 | | entropy_loss | -1.2 | | explained_variance | -0.129 | | learning_rate | 0.0003 | | loss | -0.0158 | | n_updates | 30 | | policy_gradient_loss | -0.0134 | | std | 0.775 | | value_loss | 0.0194 | | | clip_fraction | 0.039 | | clip_range | 0.2 | | entropy_loss | -1.12 | | explained_variance | -0.0127 | | learning_rate | 0.0003 | | loss | -0.0329 | | n_updates | 40 | | policy_gradient_loss | -0.0155 | | std | 0.709 | | value_loss | 0.0156 | -----------------------------------------
No response
The text was updated successfully, but these errors were encountered:
No branches or pull requests
🐛 Bug
ep_rew_mean
doesnt improve much withMountainCarContinuous-v0
usingPPO
To Reproduce
Relevant log output / Error message
System Info
No response
Checklist
The text was updated successfully, but these errors were encountered: