forked from pyg-team/pyg-lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
155 lines (126 loc) · 4.73 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Environment flags to control different options
#
# USE_MKL_BLAS=1
# enables use of MKL BLAS (requires PyTorch to be built with MKL support)
import importlib
import os
import os.path as osp
import subprocess
import warnings
from setuptools import Extension, find_packages, setup
from setuptools.command.build_ext import build_ext
__version__ = '0.3.1'
URL = 'https://github.com/pyg-team/pyg-lib'
class CMakeExtension(Extension):
def __init__(self, name, sourcedir=''):
Extension.__init__(self, name, sources=[])
self.sourcedir = os.path.abspath(sourcedir)
class CMakeBuild(build_ext):
@staticmethod
def check_env_flag(name: str, default: str = "") -> bool:
value = os.getenv(name, default).upper()
return value in ["1", "ON", "YES", "TRUE", "Y"]
def get_ext_filename(self, ext_name):
# Remove Python ABI suffix:
ext_filename = super().get_ext_filename(ext_name)
ext_filename_parts = ext_filename.split('.')
ext_filename_parts = ext_filename_parts[:-2] + ext_filename_parts[-1:]
return '.'.join(ext_filename_parts)
def build_extension(self, ext):
import sysconfig
import torch
extdir = os.path.abspath(osp.dirname(self.get_ext_fullpath(ext.name)))
self.build_type = "DEBUG" if self.debug else "RELEASE"
if self.debug is None:
if CMakeBuild.check_env_flag("DEBUG"):
self.build_type = "DEBUG"
elif CMakeBuild.check_env_flag("REL_WITH_DEB_INFO"):
self.build_type = "RELWITHDEBINFO"
if not osp.exists(self.build_temp):
os.makedirs(self.build_temp)
WITH_CUDA = torch.cuda.is_available()
WITH_CUDA = bool(int(os.getenv('FORCE_CUDA', WITH_CUDA)))
cmake_args = [
'-DBUILD_TEST=OFF',
'-DBUILD_BENCHMARK=OFF',
'-DUSE_PYTHON=ON',
f'-DWITH_CUDA={"ON" if WITH_CUDA else "OFF"}',
f'-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={extdir}',
f'-DCMAKE_BUILD_TYPE={self.build_type}',
f'-DCMAKE_PREFIX_PATH={torch.utils.cmake_prefix_path}',
]
if CMakeBuild.check_env_flag('USE_MKL_BLAS'):
include_dir = f"{sysconfig.get_path('data')}{os.sep}include"
cmake_args.append(f'-DBLAS_INCLUDE_DIR={include_dir}')
cmake_args.append('-DUSE_MKL_BLAS=ON')
with_ninja = importlib.util.find_spec('ninja') is not None
with_ninja |= os.environ.get('FORCE_NINJA') is not None
if with_ninja:
cmake_args += ['-GNinja']
else:
warnings.warn("Building times of 'pyg-lib' can be heavily improved"
" by installing 'ninja': `pip install ninja`")
build_args = []
subprocess.check_call(['cmake', ext.sourcedir] + cmake_args,
cwd=self.build_temp)
subprocess.check_call(['cmake', '--build', '.'] + build_args,
cwd=self.build_temp)
def maybe_append_with_mkl(dependencies):
if CMakeBuild.check_env_flag('USE_MKL_BLAS'):
import re
import torch
torch_config = torch.__config__.show()
with_mkl_blas = 'BLAS_INFO=mkl' in torch_config
if torch.backends.mkl.is_available() and with_mkl_blas:
product_version = '2023.1.0'
pattern = r'oneAPI Math Kernel Library Version [0-9]{4}\.[0-9]+'
match = re.search(pattern, torch_config)
if match:
product_version = match.group(0).split(' ')[-1]
dependencies.append(f'mkl-include=={product_version}')
dependencies.append(f'mkl=={product_version}')
dependencies.append(f'mkl-devel=={product_version}')
install_requires = []
maybe_append_with_mkl(install_requires)
triton_requires = [
'triton',
]
test_requires = [
'pytest',
'pytest-cov',
]
dev_requires = [
'pre-commit',
]
if not bool(os.getenv('BUILD_DOCS', 0)):
ext_modules = [CMakeExtension('libpyg')]
cmdclass = {'build_ext': CMakeBuild}
else:
ext_modules = None
cmdclass = {}
setup(
name='pyg_lib',
version=__version__,
description='Low-Level Graph Neural Network Operators for PyG',
author='PyG Team',
author_email='[email protected]',
url=URL,
download_url=f'{URL}/archive/{__version__}.tar.gz',
keywords=[
'deep-learning',
'pytorch',
'geometric-deep-learning',
'graph-neural-networks',
'graph-convolutional-networks',
],
python_requires='>=3.8',
install_requires=install_requires,
extras_require={
'triton': triton_requires,
'test': test_requires,
'dev': dev_requires,
},
packages=find_packages(),
ext_modules=ext_modules,
cmdclass=cmdclass,
)