-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOGBG.py
224 lines (181 loc) · 9.18 KB
/
OGBG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import random
import time
import numpy as np
import torch
import wandb
from torch_geometric.loader import DataLoader
from torch_geometric.utils import degree
from ogb.graphproppred import Evaluator
from SE2P import EnrichedGraphDataset, SE2P_C1, SE2P_C2, SE2P_C3, SE2P_C4, count_parameters
from DROPGNN import GCN, DropGCN, GIN, DropGIN
from datasets import get_dataset
from args import get_args
def train_ogb(train_loader, model, optimizer, device):
total_loss = 0
N = 0
criterion = torch.nn.BCEWithLogitsLoss()
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
mask = ~torch.isnan(data.y)
out = model(data)[mask]
y = data.y[mask].to(torch.float)
loss = criterion(out, y)
loss.backward()
total_loss += loss.item() * data.num_graphs
N += data.num_graphs
optimizer.step()
return total_loss / N
def test_ogb(loader, model, evaluator, device):
y_preds, y_trues = [], []
for data in loader:
data = data.to(device)
y_preds.append(model(data))
y_trues.append(data.y)
return evaluator.eval({
'y_pred': torch.cat(y_preds, dim=0),
'y_true': torch.cat(y_trues, dim=0),
})[evaluator.eval_metric]
def main():
args = get_args()
if args.dataset not in ['ogbg-molhiv', 'ogbg-moltox21']:
raise ValueError("Invalid dataset")
dataset = get_dataset(args)
print(dataset)
n = []
degs = []
for g in dataset:
num_nodes = g.num_nodes
deg = degree(g.edge_index[0], g.num_nodes, dtype=torch.long)
n.append(num_nodes)
degs.append(deg.max())
print(f'Mean Degree: {torch.stack(degs).float().mean()}')
print(f'Max Degree: {torch.stack(degs).max()}')
print(f'Min Degree: {torch.stack(degs).min()}')
mean_n = torch.tensor(n).float().mean().round().long().item()
max_nodes = torch.tensor(n).float().max().round().long().item()
min_nodes = torch.tensor(n).float().min().round().long().item()
print(f'Mean number of nodes: {mean_n}')
print(f'Max number of nodes: {max_nodes}')
print(f'Min number of nodes: {min_nodes}')
print(f'Number of graphs: {len(dataset)}')
gamma = mean_n
p = 2 * 1 / (1 + gamma)
# num_perturbations = round(gamma * np.log10(gamma)) # Commented out based on DropGNN code.
num_perturbations = gamma
print(f'Number of perturbations: {num_perturbations}')
print(f'Sampling probability: {p}')
print(f'Number of features: {dataset.num_features}')
current_path = os.getcwd()
seeds_to_test = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
all_validation_acc = []
all_test_acc = []
for seed in seeds_to_test:
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if args.configuration == 'c1' or args.configuration == 'c2' or args.configuration == 'c3' or args.configuration == 'c4':
name = f"enriched_{args.dataset}_{args.configuration}"
start_time = time.time()
enriched_dataset = EnrichedGraphDataset(os.path.join(current_path, 'enriched_dataset'), name, dataset,
p=p, num_perturbations=num_perturbations, args=args)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Done! Time taken: {elapsed_time:.2f} seconds")
print(f'Number of enriched features: {enriched_dataset.num_features}')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
print(f'Device: {device}')
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
split_idx = dataset.get_idx_split()
if args.configuration == 'c1' or args.configuration == 'c2' or args.configuration == 'c3' or args.configuration == 'c4':
train_loader = DataLoader(enriched_dataset[split_idx["train"]], batch_size=args.batch_size,
shuffle=True)
valid_loader = DataLoader(enriched_dataset[split_idx["valid"]], batch_size=args.batch_size,
shuffle=False)
test_loader = DataLoader(enriched_dataset[split_idx["test"]], batch_size=args.batch_size,
shuffle=False)
else:
train_loader = DataLoader(dataset[split_idx["train"]], batch_size=args.batch_size, shuffle=True)
valid_loader = DataLoader(dataset[split_idx["valid"]], batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(dataset[split_idx["test"]], batch_size=args.batch_size, shuffle=False)
if args.configuration == 'c1':
model = SE2P_C1(enriched_dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12,
args).to(device)
elif args.configuration == 'c2':
model = SE2P_C2(enriched_dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12, args).to(
device)
elif args.configuration == 'c3':
model = SE2P_C3(enriched_dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12,
num_perturbations, device, args).to(device)
elif args.configuration == 'c4':
model = SE2P_C4(enriched_dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12,
num_perturbations, device, args).to(device)
elif args.configuration == 'GIN':
model = GIN(dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12, args).to(device)
elif args.configuration == 'GCN':
model = GCN(dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12, args).to(device)
elif args.configuration == 'DropGIN':
model = DropGIN(dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12, num_perturbations, p,
args).to(device)
elif args.configuration == 'DropGCN':
model = DropGCN(dataset.num_features, 1 if args.dataset == 'ogbg-molhiv' else 12, num_perturbations, p,
args).to(device)
else:
raise ValueError("Invalid model name")
evaluator = Evaluator(name=args.dataset)
print(f'Model learnable parameters for {model.__class__.__name__}: {count_parameters(model)}')
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
start_outer = time.time()
best_val_perf = test_perf = float('-inf')
max_memory_allocated = 0
max_memory_reserved = 0
validation_perf = []
tests_perf = []
print(f'seed: {seed}')
print("=" * 10)
for epoch in range(1, args.epochs + 1):
start = time.time()
model.train()
train_loss = train_ogb(train_loader, model, optimizer, device=device)
scheduler.step()
memory_allocated = torch.cuda.max_memory_allocated(device) // (1024 ** 2)
memory_reserved = torch.cuda.max_memory_reserved(device) // (1024 ** 2)
max_memory_allocated = max(max_memory_allocated, memory_allocated)
max_memory_reserved = max(max_memory_reserved, memory_reserved)
model.eval()
val_perf = test_ogb(valid_loader, model, evaluator, device)
validation_perf.append(val_perf)
if val_perf > best_val_perf:
best_val_perf = val_perf
test_perf = test_ogb(test_loader, model, evaluator, device)
tests_perf.append(test_perf)
time_per_epoch = time.time() - start
if epoch % 25 == 0 or epoch == 1:
print(f'Epoch: {epoch:03d}, Train Loss: {train_loss:.4f}, '
f'Val: {val_perf:.4f}, Test: {test_perf:.4f}, Seconds: {time_per_epoch:.4f},'
f' Memory allocated: {memory_allocated}, Memory Reserved: {memory_reserved}')
time_average_epoch = time.time() - start_outer
print(
f'Best Validation in seed {seed}: {best_val_perf}, Test in seed {seed}: {test_perf}, Seconds/epoch: {time_average_epoch / args.epochs},'
f' Max memory allocated: {max_memory_allocated}, Max memory reserved: {max_memory_reserved}')
print("=" * 50)
all_validation_acc.append(torch.tensor(validation_perf))
all_test_acc.append(torch.tensor(tests_perf))
final_vals = torch.stack(all_validation_acc)
final_tests = torch.stack(all_test_acc)
val_mean = final_vals.mean(dim=0)
best_epoch = val_mean.argmax().item()
best_epoch_mean_val = final_vals[:, best_epoch].mean()
best_epoch_std_val = final_vals[:, best_epoch].std()
best_epoch_mean_test = final_tests[:, best_epoch].mean()
best_epoch_std_test = final_tests[:, best_epoch].std()
print(f'Epoch {best_epoch + 1} got maximum average validation accuracy')
print(f'Validation accuracy for all the seeds: {best_epoch_mean_val} | Std validation for all the seeds: '
f'{best_epoch_std_val} | Test accuracy for all the seeds: {best_epoch_mean_test} | Std test for all the'
f' seeds: {best_epoch_std_test}')
if __name__ == "__main__":
main()