model | dataset | backbone | img size | mAP | mATE | mASE | mAOE | mAVE | mAAE | NDS | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sparse4D | validation | Res101 | 640x1600 | 0.4409 | 0.6282 | 0.2721 | 0.3853 | 0.2922 | 0.1888 | 0.5438 | ckpt | log |
Install requirements.
pip install -r requirements.txt
Download nuScenes dataset, pretrain checkpoint(fcos3d.pth ResNet101), pkl files(nuscenes_infos_trainval_with_inds.pkl) and init anchor centers(nuscenes_kmeans900.npy). Adjust the directory structure as follows:
Sparse4D
├── data
│ ├── nuscenes
│ │ ├── maps
│ │ ├── lidarseg
│ │ ├── samples
│ │ ├── sweeps
│ │ ├── v1.0-mini
│ │ ├── v1.0-test
| | └── v1.0-trainval
│ ├── nuscenes_cam
│ │ ├── nuscenes_infos_test.pkl
│ │ ├── nuscenes_infos_train.pkl
│ │ ├── nuscenes_infos_val.pkl
│ │ └── nuscenes_infos_trainval_with_inds.pkl
├── projects
│ ├── configs
│ │ ├── default_runtime.py
│ │ ├── sparse4d_r101_H1.py
│ │ ├── sparse4d_r101_H4.py
│ │ └── ...
│ └── mmdet3d_plugin
│ ├── apis
│ ├── core
│ ├── datasets
│ └── models
├── tools
│ ├── dist_test.sh
│ ├── dist_train.sh
│ ├── test.py
│ └── train.py
├── local_test.sh
├── local_train.sh
├── fcos3d.pth
└── nuscenes_kmeans900.npy
Train with config_name.py.
bash local_train.sh config_name
Test checkpoint_file with config_name.py.
bash local_test.sh config_name checkpoint_file
@misc{2211.10581,
Author = {Xuewu Lin and Tianwei Lin and Zixiang Pei and Lichao Huang and Zhizhong Su},
Title = {Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion},
Year = {2022},
Eprint = {arXiv:2211.10581},
}