-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathDG_dynarr.h
965 lines (780 loc) · 34.9 KB
/
DG_dynarr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/*
* A header-only typesafe dynamic array implementation for plain C,
* kinda like C++ std::vector. This code is compatible with C++, but should
* only be used with POD (plain old data) types, as it uses memcpy() etc
* instead of copy/move construction/assignment.
* It requires a new type (created with the DA_TYPEDEF(ELEMENT_TYPE, ARRAY_TYPE_NAME)
* macro) for each kind of element you want to put in a dynamic array; however
* the "functions" to manipulate the array are actually macros and the same
* for all element types.
* The array elements are accessed via dynArr.p[i] or da_get(dynArr, i)
* - the latter checks whether i is a valid index and asserts if not.
*
* One thing to keep in mind is that, because of using macros, the arguments to
* the "functions" are usually evaluated more than once, so you should avoid
* putting things with side effect (like function-calls with side effects or i++)
* into them. Notable exceptions are the value arguments (v) of da_push()
* and da_insert(), so it's still ok to do da_push(arr, fun_with_sideffects());
* or da_insert(a, 3, x++);
*
* The function-like da_* macros are short aliases of dg_dynarr_* macros.
* If the short names clash with anything in your code or other headers
* you are using, you can, before #including this header, do
* #define DG_DYNARR_NO_SHORTNAMES
* and use the long dg_dynarr_* forms of the macros instead.
*
* Using this library in your project:
* Put this file somewhere in your project.
* In *one* of your .c/.cpp files, do
* #define DG_DYNARR_IMPLEMENTATION
* #include "DG_dynarr.h"
* to create the implementation of this library in that file.
* You can just #include "DG_dynarr.h" (without the #define) in other source
* files to use it there.
*
* See below this comment block for a usage example.
*
* You can #define your own allocators, assertion and the amount of runtime
* checking of indexes, see CONFIGURATION section in the code for more information.
*
*
* This is heavily inspired by Sean Barrett's stretchy_buffer.h
* ( see: https://github.com/nothings/stb/blob/master/stretchy_buffer.h )
* However I wanted to have a struct that holds the array pointer and the length
* and capacity, so that struct always remains at the same address while the
* array memory might be reallocated.
* I can live with arr.p[i] instead of arr[i], but I like how he managed to use
* macros to create an API that doesn't force the user to specify the stored
* type over and over again, so I stole some of his tricks :-)
*
* This has been tested with GCC 4.8 and clang 3.8 (-std=gnu89, -std=c99 and as C++;
* -std=c89 works if you convert the C++-style comments to C comments) and
* Microsoft Visual Studio 6 and 2010 (32bit) and 2013 (32bit and 64bit).
* I guess it works with all (recentish) C++ compilers and C compilers supporting
* C99 or even C89 + C++ comments (otherwise converting the comments should help).
*
* (C) 2016 Daniel Gibson
*
* LICENSE
* This software is dual-licensed to the public domain and under the following
* license: you are granted a perpetual, irrevocable license to copy, modify,
* publish, and distribute this file as you see fit.
* No warranty implied; use at your own risk.
*
* So you can do whatever you want with this code, including copying it
* (or parts of it) into your own source.
* No need to mention me or this "license" in your code or docs, even though
* it would be appreciated, of course.
*/
#if 0 // Usage Example:
#define DG_DYNARR_IMPLEMENTATION // this define is only needed in *one* .c/.cpp file!
#include "DG_dynarr.h"
DA_TYPEDEF(int, MyIntArrType); // creates MyIntArrType - a dynamic array for ints
void printIntArr(MyIntArrType* arr, const char* name)
{
// note that arr is a pointer here, so use *arr in the da_*() functions.
printf("%s = {", name);
if(da_count(*arr) > 0)
printf(" %d", arr->p[0]);
for(int i=1; i<da_count(*arr); ++i)
printf(", %d", arr->p[i]);
printf(" }\n");
}
void myFunction()
{
MyIntArrType a1 = {0}; // make sure to zero out the struct
// instead of = {0}; you could also call da_init(a1);
da_push(a1, 42);
assert(da_count(a1) == 1 && a1.p[0] == 42);
int* addedElements = da_addn_uninit(a1, 3);
assert(da_count(a1) == 4);
for(size_t i=0; i<3; ++i)
addedElements[i] = i+5;
printIntArr(&a1, "a1"); // "a1 = { 42, 5, 6, 7 }"
MyIntArrType a2;
da_init(a2);
da_addn(a2, a1.p, da_count(a1)); // copy all elements from a1 to a2
assert(da_count(a2) == 4);
da_insert(a2, 1, 11);
printIntArr(&a2, "a2"); // "a2 = { 42, 11, 5, 6, 7 }"
da_delete(a2, 2);
printIntArr(&a2, "a2"); // "a2 = { 42, 11, 6, 7 }"
da_deletefast(a2, 0);
printIntArr(&a2, "a2"); // "a2 = { 7, 11, 6 }"
da_push(a1, 3);
printIntArr(&a1, "a1"); // "a1 = { 42, 5, 6, 7, 3 }"
int x=da_pop(a1);
printf("x = %d\n", x); // "x = 3"
printIntArr(&a1, "a1"); // "a1 = { 42, 5, 6, 7 }"
da_free(a1); // make sure not to leak memory!
da_free(a2);
}
#endif // 0 (usage example)
#ifndef DG__DYNARR_H
#define DG__DYNARR_H
// ######### CONFIGURATION #########
// following: some #defines that you can tweak to your liking
// you can reduce some overhead by defining DG_DYNARR_INDEX_CHECK_LEVEL to 2, 1 or 0
#ifndef DG_DYNARR_INDEX_CHECK_LEVEL
// 0: (almost) no index checking
// 1: macros "returning" something return a.p[0] or NULL if the index was invalid
// 2: assertions in all macros taking indexes that make sure they're valid
// 3: 1 and 2
#define DG_DYNARR_INDEX_CHECK_LEVEL 3
#endif // DG_DYNARR_INDEX_CHECK_LEVEL
// you can #define your own DG_DYNARR_ASSERT(condition, msgstring)
// that will be used for all assertions in this code.
#ifndef DG_DYNARR_ASSERT
#include <assert.h>
#define DG_DYNARR_ASSERT(cond, msg) assert((cond) && msg)
#endif
// you can #define DG_DYNARR_OUT_OF_MEMORY to some code that will be executed
// if allocating memory fails
// it's needed only before the #define DG_DYNARR_IMPLEMENTATION #include of
// this header, so the following is here only for reference and commented out
/*
#ifndef DG_DYNARR_OUT_OF_MEMORY
#define DG_DYNARR_OUT_OF_MEMORY DG_DYNARR_ASSERT(0, "Out of Memory!");
#endif
*/
// By default, C's malloc(), realloc() and free() is used to allocate/free heap memory
// (see beginning of "#ifdef DG_DYNARR_IMPLEMENTATION" block below).
// You can #define DG_DYNARR_MALLOC, DG_DYNARR_REALLOC and DG_DYNARR_FREE yourself
// to provide alternative implementations like Win32 Heap(Re)Alloc/HeapFree
// it's needed only before the #define DG_DYNARR_IMPLEMENTATION #include of
// this header, so the following is here only for reference and commented out
/*
#define DG_DYNARR_MALLOC(elemSize, numElems) malloc(elemSize*numElems)
// oldNumElems is not used for C's realloc, but maybe you need it for
// your allocator to copy the old elements over
#define DG_DYNARR_REALLOC(ptr, elemSize, oldNumElems, newCapacity) \
realloc(ptr, elemSize*newCapacity);
#define DG_DYNARR_FREE(ptr) free(ptr)
*/
// if you want to prepend something to the non inline (DG_DYNARR_INLINE) functions,
// like "__declspec(dllexport)" or whatever, #define DG_DYNARR_DEF
#ifndef DG_DYNARR_DEF
// by defaults it's empty.
#define DG_DYNARR_DEF
#endif
// some functions are inline, in case your compiler doesn't like "static inline"
// but wants "__inline__" or something instead, #define DG_DYNARR_INLINE accordingly.
#ifndef DG_DYNARR_INLINE
// for pre-C99 compilers you might have to use something compiler-specific (or maybe only "static")
#ifdef _MSC_VER
#define DG_DYNARR_INLINE static __inline
#else
#define DG_DYNARR_INLINE static inline
#endif
#endif
// ############### Short da_* aliases for the long names ###############
#ifndef DG_DYNARR_NO_SHORTNAMES
// this macro is used to create an array type (struct) for elements of TYPE
// use like DA_TYPEDEF(int, MyIntArrType); MyIntArrType ia = {0}; da_push(ia, 42); ...
#define DA_TYPEDEF(TYPE, NewArrayTypeName) \
DG_DYNARR_TYPEDEF(TYPE, NewArrayTypeName)
// makes sure the array is initialized and can be used.
// either do YourArray arr = {0}; or YourArray arr; da_init(arr);
#define da_init(a) \
dg_dynarr_init(a)
/*
* This allows you to provide an external buffer that'll be used as long as it's big enough
* once you add more elements than buf can hold, fresh memory will be allocated on the heap
* Use like:
* DA_TYPEDEF(double, MyDoubleArrType);
* MyDoubleArrType arr;
* double buf[8];
* dg_dynarr_init_external(arr, buf, 8);
* dg_dynarr_push(arr, 1.23);
* ...
*/
#define da_init_external(a, buf, buf_cap) \
dg_dynarr_init_external(a, buf, buf_cap)
// use this to free the memory allocated by dg_dynarr once you don't need the array anymore
// Note: it is safe to add new elements to the array after da_free()
// it will allocate new memory, just like it would directly after da_init()
#define da_free(a) \
dg_dynarr_free(a)
// add an element to the array (appended at the end)
#define da_push(a, v) \
dg_dynarr_push(a, v)
// add an element to the array (appended at the end)
// does the same as push, just for consistency with addn (like insert and insertn)
#define da_add(a, v) \
dg_dynarr_add(a, v)
// append n elements to a and initialize them from array vals, doesn't return anything
// ! vals (and all other args) are evaluated multiple times !
#define da_addn(a, vals, n) \
dg_dynarr_addn(a, vals, n)
// add n elements to the end of the array and zeroes them with memset()
// returns pointer to first added element, NULL if out of memory (array is empty then)
#define da_addn_zeroed(a, n) \
dg_dynarr_addn_zeroed(a, n)
// add n elements to the end of the array, will remain uninitialized
// returns pointer to first added element, NULL if out of memory (array is empty then)
#define da_addn_uninit(a, n) \
dg_dynarr_addn_uninit(a, n)
// insert a single value v at index idx
#define da_insert(a, idx, v) \
dg_dynarr_insert(a, idx, v)
// insert n elements into a at idx, initialize them from array vals
// doesn't return anything
// ! vals (and all other args) is evaluated multiple times !
#define da_insertn(a, idx, vals, n) \
dg_dynarr_insertn(a, idx, vals, n)
// insert n elements into a at idx and zeroe them with memset()
// returns pointer to first inserted element or NULL if out of memory
#define da_insertn_zeroed(a, idx, n) \
dg_dynarr_insertn_zeroed(a, idx, n)
// insert n uninitialized elements into a at idx;
// returns pointer to first inserted element or NULL if out of memory
#define da_insertn_uninit(a, idx, n) \
dg_dynarr_insertn_uninit(a, idx, n)
// set a single value v at index idx - like "a.p[idx] = v;" but with checks (unless disabled)
#define da_set(a, idx, v) \
dg_dynarr_set(a, idx, v)
// overwrite n elements of a, starting at idx, with values from array vals
// doesn't return anything
// ! vals (and all other args) is evaluated multiple times !
#define da_setn(a, idx, vals, n) \
dg_dynarr_setn(a, idx, vals, n)
// delete the element at idx, moving all following elements (=> keeps order)
#define da_delete(a, idx) \
dg_dynarr_delete(a, idx)
// delete n elements starting at idx, moving all following elements (=> keeps order)
#define da_deleten(a, idx, n) \
dg_dynarr_deleten(a, idx, n)
// delete the element at idx, move the last element there (=> doesn't keep order)
#define da_deletefast(a, idx) \
dg_dynarr_deletefast(a, idx)
// delete n elements starting at idx, move the last n elements there (=> doesn't keep order)
#define da_deletenfast(a, idx, n) \
dg_dynarr_deletenfast(a, idx, n)
// removes all elements from the array, but does not free the buffer
// (if you want to free the buffer too, just use da_free())
#define da_clear(a) \
dg_dynarr_clear(a)
// sets the logical number of elements in the array
// if cnt > dg_dynarr_count(a), the logical count will be increased accordingly
// and the new elements will be uninitialized
#define da_setcount(a, cnt) \
dg_dynarr_setcount(a, cnt)
// make sure the array can store cap elements without reallocating
// logical count remains unchanged
#define da_reserve(a, cap) \
dg_dynarr_reserve(a, cap)
// this makes sure a only uses as much memory as for its elements
// => maybe useful if a used to contain a huge amount of elements,
// but you deleted most of them and want to free some memory
// Note however that this implies an allocation and copying the remaining
// elements, so only do this if it frees enough memory to be worthwhile!
#define da_shrink_to_fit(a) \
dg_dynarr_shrink_to_fit(a)
// removes and returns the last element of the array
#define da_pop(a) \
dg_dynarr_pop(a)
// returns the last element of the array
#define da_last(a) \
dg_dynarr_last(a)
// returns the pointer *to* the last element of the array
// (in contrast to dg_dynarr_end() which returns a pointer *after* the last element)
// returns NULL if array is empty
#define da_lastptr(a) \
dg_dynarr_lastptr(a)
// get element at index idx (like a.p[idx]), but with checks
// (unless you disabled them with #define DG_DYNARR_INDEX_CHECK_LEVEL 0)
#define da_get(a, idx) \
dg_dynarr_get(a,idx)
// get pointer to element at index idx (like &a.p[idx]), but with checks
// and it returns NULL if idx is invalid
#define da_getptr(a, idx) \
dg_dynarr_getptr(a, idx)
// returns a pointer to the first element of the array
// (together with dg_dynarr_end() you can do C++-style iterating)
#define da_begin(a) \
dg_dynarr_begin(a)
// returns a pointer to the past-the-end element of the array
// Allows C++-style iterating, in case you're into that kind of thing:
// for(T *it=da_begin(a), *end=da_end(a); it!=end; ++it) foo(*it);
// (see da_lastptr() to get a pointer *to* the last element)
#define da_end(a) \
dg_dynarr_end(a)
// returns (logical) number of elements currently in the array
#define da_count(a) \
dg_dynarr_count(a)
// get the current reserved capacity of the array
#define da_capacity(a) \
dg_dynarr_capacity(a)
// returns 1 if the array is empty, else 0
#define da_empty(a) \
dg_dynarr_empty(a)
// returns 1 if the last (re)allocation when inserting failed (Out Of Memory)
// or if the array has never allocated any memory yet, else 0
// deleting the contents when growing fails instead of keeping old may seem
// a bit uncool, but it's simple and OOM should rarely happen on modern systems
// anyway - after all you need to deplete both RAM and swap/pagefile.sys
#define da_oom(a) \
dg_dynarr_oom(a)
// sort a using the given qsort()-comparator cmp
// (just a slim wrapper around qsort())
#define da_sort(a, cmp) \
dg_dynarr_sort(a, cmp)
#endif // DG_DYNARR_NO_SHORTNAMES
// ######### Implementation of the actual macros (using the long names) ##########
// use like DG_DYNARR_TYPEDEF(int, MyIntArrType); MyIntArrType ia = {0}; dg_dynarr_push(ia, 42); ...
#define DG_DYNARR_TYPEDEF(TYPE, NewArrayTypeName) \
typedef struct { TYPE* p; dg__dynarr_md md; } NewArrayTypeName;
// makes sure the array is initialized and can be used.
// either do YourArray arr = {0}; or YourArray arr; dg_dynarr_init(arr);
#define dg_dynarr_init(a) \
dg__dynarr_init((void**)&(a).p, &(a).md, NULL, 0)
// this allows you to provide an external buffer that'll be used as long as it's big enough
// once you add more elements than buf can hold, fresh memory will be allocated on the heap
#define dg_dynarr_init_external(a, buf, buf_cap) \
dg__dynarr_init((void**)&(a).p, &(a).md, (buf), (buf_cap))
// use this to free the memory allocated by dg_dynarr
// Note: it is safe to add new elements to the array after dg_dynarr_free()
// it will allocate new memory, just like it would directly after dg_dynarr_init()
#define dg_dynarr_free(a) \
dg__dynarr_free((void**)&(a).p, &(a).md)
// add an element to the array (appended at the end)
#define dg_dynarr_push(a, v) \
(dg__dynarr_maybegrowadd(dg__dynarr_unp(a), 1) ? (((a).p[(a).md.cnt++] = (v)),0) : 0)
// add an element to the array (appended at the end)
// does the same as push, just for consistency with addn (like insert and insertn)
#define dg_dynarr_add(a, v) \
dg_dynarr_push((a), (v))
// append n elements to a and initialize them from array vals, doesn't return anything
// ! vals (and all other args) are evaluated multiple times !
#define dg_dynarr_addn(a, vals, n) do { \
DG_DYNARR_ASSERT((vals)!=NULL, "Don't pass NULL als vals to dg_dynarr_addn!"); \
if((vals)!=NULL && dg__dynarr_add(dg__dynarr_unp(a), n, 0)) { \
size_t i_=(a).md.cnt-(n), v_=0; \
while(i_<(a).md.cnt) (a).p[i_++]=(vals)[v_++]; \
} } DG__DYNARR_WHILE0
// add n elements to the end of the array and zeroe them with memset()
// returns pointer to first added element, NULL if out of memory (array is empty then)
#define dg_dynarr_addn_zeroed(a, n) \
(dg__dynarr_add(dg__dynarr_unp(a), (n), 1) ? &(a).p[(a).md.cnt-(size_t)(n)] : NULL)
// add n elements to the end of the array, which are uninitialized
// returns pointer to first added element, NULL if out of memory (array is empty then)
#define dg_dynarr_addn_uninit(a, n) \
(dg__dynarr_add(dg__dynarr_unp(a), (n), 0) ? &(a).p[(a).md.cnt-(size_t)(n)] : NULL)
// insert a single value v at index idx
#define dg_dynarr_insert(a, idx, v) \
(dg__dynarr_checkidxle((a),(idx)), \
dg__dynarr_insert(dg__dynarr_unp(a), (idx), 1, 0), \
(a).p[dg__dynarr_idx((a).md, (idx))] = (v))
// insert n elements into a at idx, initialize them from array vals
// doesn't return anything
// ! vals (and all other args) is evaluated multiple times !
#define dg_dynarr_insertn(a, idx, vals, n) do { \
DG_DYNARR_ASSERT((vals)!=NULL, "Don't pass NULL as vals to dg_dynarr_insertn!"); \
dg__dynarr_checkidxle((a),(idx)); \
if((vals)!=NULL && dg__dynarr_insert(dg__dynarr_unp(a), (idx), (n), 0)){ \
size_t i_=(idx), v_=0, e_=(idx)+(n); \
while(i_ < e_) (a).p[i_++] = (vals)[v_++]; \
}} DG__DYNARR_WHILE0
// insert n elements into a at idx and zeroe them with memset()
// returns pointer to first inserted element or NULL if out of memory
#define dg_dynarr_insertn_zeroed(a, idx, n) \
(dg__dynarr_checkidxle((a),(idx)), \
dg__dynarr_insert(dg__dynarr_unp(a), (idx), (n), 1) \
? &(a).p[dg__dynarr_idx((a).md, (idx))] : NULL)
// insert n uninitialized elements into a at idx;
// returns pointer to first inserted element or NULL if out of memory
#define dg_dynarr_insertn_uninit(a, idx, n) \
(dg__dynarr_checkidxle((a),(idx)), \
dg__dynarr_insert(dg__dynarr_unp(a), idx, n, 0) \
? &(a).p[dg__dynarr_idx((a).md, (idx))] : NULL)
// set a single value v at index idx - like "a.p[idx] = v;" but with checks (unless disabled)
#define dg_dynarr_set(a, idx, v) \
(dg__dynarr_checkidx((a),(idx)), \
(a).p[dg__dynarr_idx((a).md, (idx))] = (v))
// overwrite n elements of a, starting at idx, with values from array vals
// doesn't return anything
// ! vals (and all other args) is evaluated multiple times !
#define dg_dynarr_setn(a, idx, vals, n) do { \
DG_DYNARR_ASSERT((vals)!=NULL, "Don't pass NULL as vals to dg_dynarr_setn!"); \
size_t idx_=(idx); size_t end_=idx_+(size_t)n; \
dg__dynarr_checkidx((a),idx_); dg__dynarr_checkidx((a),end_-1); \
if((vals)!=NULL && idx_ < (a).md.cnt && end_ <= (a).md.cnt) { \
size_t v_=0; \
while(idx_ < end_) (a).p[idx_++] = (vals)[v_++]; \
}} DG__DYNARR_WHILE0
// delete the element at idx, moving all following elements (=> keeps order)
#define dg_dynarr_delete(a, idx) \
(dg__dynarr_checkidx((a),(idx)), dg__dynarr_delete(dg__dynarr_unp(a), (idx), 1))
// delete n elements starting at idx, moving all following elements (=> keeps order)
#define dg_dynarr_deleten(a, idx, n) \
(dg__dynarr_checkidx((a),(idx)), dg__dynarr_delete(dg__dynarr_unp(a), (idx), (n)))
// TODO: check whether idx+n < count?
// delete the element at idx, move the last element there (=> doesn't keep order)
#define dg_dynarr_deletefast(a, idx) \
(dg__dynarr_checkidx((a),(idx)), dg__dynarr_deletefast(dg__dynarr_unp(a), (idx), 1))
// delete n elements starting at idx, move the last n elements there (=> doesn't keep order)
#define dg_dynarr_deletenfast(a, idx, n) \
(dg__dynarr_checkidx((a),(idx)), dg__dynarr_deletefast(dg__dynarr_unp(a), idx, n))
// TODO: check whether idx+n < count?
// removes all elements from the array, but does not free the buffer
// (if you want to free the buffer too, just use dg_dynarr_free())
#define dg_dynarr_clear(a) \
((a).md.cnt=0)
// sets the logical number of elements in the array
// if cnt > dg_dynarr_count(a), the logical count will be increased accordingly
// and the new elements will be uninitialized
#define dg_dynarr_setcount(a, n) \
(dg__dynarr_maybegrow(dg__dynarr_unp(a), (n)) ? ((a).md.cnt = (n)) : 0)
// make sure the array can store cap elements without reallocating
// logical count remains unchanged
#define dg_dynarr_reserve(a, cap) \
dg__dynarr_maybegrow(dg__dynarr_unp(a), (cap))
// this makes sure a only uses as much memory as for its elements
// => maybe useful if a used to contain a huge amount of elements,
// but you deleted most of them and want to free some memory
// Note however that this implies an allocation and copying the remaining
// elements, so only do this if it frees enough memory to be worthwhile!
#define dg_dynarr_shrink_to_fit(a) \
dg__dynarr_shrink_to_fit(dg__dynarr_unp(a))
#if (DG_DYNARR_INDEX_CHECK_LEVEL == 1) || (DG_DYNARR_INDEX_CHECK_LEVEL == 3)
// removes and returns the last element of the array
#define dg_dynarr_pop(a) \
(dg__dynarr_check_notempty((a), "Don't pop an empty array!"), \
(a).p[((a).md.cnt > 0) ? (--(a).md.cnt) : 0])
// returns the last element of the array
#define dg_dynarr_last(a) \
(dg__dynarr_check_notempty((a), "Don't call da_last() on an empty array!"), \
(a).p[((a).md.cnt > 0) ? ((a).md.cnt-1) : 0])
#elif (DG_DYNARR_INDEX_CHECK_LEVEL == 0) || (DG_DYNARR_INDEX_CHECK_LEVEL == 2)
// removes and returns the last element of the array
#define dg_dynarr_pop(a) \
(dg__dynarr_check_notempty((a), "Don't pop an empty array!"), \
(a).p[--(a).md.cnt])
// returns the last element of the array
#define dg_dynarr_last(a) \
(dg__dynarr_check_notempty((a), "Don't call da_last() on an empty array!"), \
(a).p[(a).md.cnt-1])
#else // invalid DG_DYNARR_INDEX_CHECK_LEVEL
#error Invalid index check level DG_DYNARR_INDEX_CHECK_LEVEL (must be 0-3) !
#endif // DG_DYNARR_INDEX_CHECK_LEVEL
// returns the pointer *to* the last element of the array
// (in contrast to dg_dynarr_end() which returns a pointer *after* the last element)
// returns NULL if array is empty
#define dg_dynarr_lastptr(a) \
(((a).md.cnt > 0) ? ((a).p + (a).md.cnt - 1) : NULL)
// get element at index idx (like a.p[idx]), but with checks
// (unless you disabled them with #define DG_DYNARR_INDEX_CHECK_LEVEL 0)
#define dg_dynarr_get(a, idx) \
(dg__dynarr_checkidx((a),(idx)), (a).p[dg__dynarr_idx((a).md, (idx))])
// get pointer to element at index idx (like &a.p[idx]), but with checks
// (unless you disabled them with #define DG_DYNARR_INDEX_CHECK_LEVEL 0)
// if index-checks are disabled, it returns NULL on invalid index (else it asserts() before returning)
#define dg_dynarr_getptr(a, idx) \
(dg__dynarr_checkidx((a),(idx)), \
((size_t)(idx) < (a).md.cnt) ? ((a).p+(size_t)(idx)) : NULL)
// returns a pointer to the first element of the array
// (together with dg_dynarr_end() you can do C++-style iterating)
#define dg_dynarr_begin(a) \
((a).p)
// returns a pointer to the past-the-end element of the array
// Allows C++-style iterating, in case you're into that kind of thing:
// for(T *it=dg_dynarr_begin(a), *end=dg_dynarr_end(a); it!=end; ++it) foo(*it);
// (see dg_dynarr_lastptr() to get a pointer *to* the last element)
#define dg_dynarr_end(a) \
((a).p + (a).md.cnt)
// returns (logical) number of elements currently in the array
#define dg_dynarr_count(a) \
((a).md.cnt)
// get the current reserved capacity of the array
#define dg_dynarr_capacity(a) \
((a).md.cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB)
// returns 1 if the array is empty, else 0
#define dg_dynarr_empty(a) \
((a).md.cnt == 0)
// returns 1 if the last (re)allocation when inserting failed (Out Of Memory)
// or if the array has never allocated any memory yet, else 0
// deleting the contents when growing fails instead of keeping old may seem
// a bit uncool, but it's simple and OOM should rarely happen on modern systems
// anyway - after all you need to deplete both RAM and swap/pagefile.sys
// or deplete the address space, which /might/ happen with 32bit applications
// but probably not with 64bit (at least in the foreseeable future)
#define dg_dynarr_oom(a) \
((a).md.cap == 0)
// sort a using the given qsort()-comparator cmp
// (just a slim wrapper around qsort())
#define dg_dynarr_sort(a, cmp) \
qsort((a).p, (a).md.cnt, sizeof((a).p[0]), (cmp))
// ######### Implementation-Details that are not part of the API ##########
#include <stdlib.h> // size_t, malloc(), free(), realloc()
#include <string.h> // memset(), memcpy(), memmove()
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
size_t cnt; // logical number of elements
size_t cap; // cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB is actual capacity (in elements, *not* bytes!)
// if(cap & DG__DYNARR_SIZE_T_MSB) the current memory is not allocated by dg_dynarr,
// but was set with dg_dynarr_init_external()
// that's handy to give an array a base-element storage on the stack, for example
// TODO: alternatively, we could introduce a flag field to this struct and use that,
// so we don't have to calculate & everytime cap is needed
} dg__dynarr_md;
// I used to have the following in an enum, but MSVC assumes enums are always 32bit ints
static const size_t DG__DYNARR_SIZE_T_MSB = ((size_t)1) << (sizeof(size_t)*8 - 1);
static const size_t DG__DYNARR_SIZE_T_ALL_BUT_MSB = (((size_t)1) << (sizeof(size_t)*8 - 1))-1;
// "unpack" the elements of an array struct for use with helper functions
// (to void** arr, dg__dynarr_md* md, size_t itemsize)
#define dg__dynarr_unp(a) \
(void**)&(a).p, &(a).md, sizeof((a).p[0])
// MSVC warns about "conditional expression is constant" when using the
// do { ... } while(0) idiom in macros..
#ifdef _MSC_VER
#if _MSC_VER >= 1400 // MSVC 2005 and newer
// people claim MSVC 2005 and newer support __pragma, even though it's only documented
// for 2008+ (https://msdn.microsoft.com/en-us/library/d9x1s805%28v=vs.90%29.aspx)
// the following workaround is based on
// http://cnicholson.net/2009/03/stupid-c-tricks-dowhile0-and-c4127/
#define DG__DYNARR_WHILE0 \
__pragma(warning(push)) \
__pragma(warning(disable:4127)) \
while(0) \
__pragma(warning(pop))
#else // older MSVC versions don't support __pragma - I heard this helps for them
#define DG__DYNARR_WHILE0 while(0,0)
#endif
#else // other compilers
#define DG__DYNARR_WHILE0 while(0)
#endif // _MSC_VER
#if (DG_DYNARR_INDEX_CHECK_LEVEL == 2) || (DG_DYNARR_INDEX_CHECK_LEVEL == 3)
#define dg__dynarr_checkidx(a,i) \
DG_DYNARR_ASSERT((size_t)i < a.md.cnt, "index out of bounds!")
// special case for insert operations: == cnt is also ok, insert will append then
#define dg__dynarr_checkidxle(a,i) \
DG_DYNARR_ASSERT((size_t)i <= a.md.cnt, "index out of bounds!")
#define dg__dynarr_check_notempty(a, msg) \
DG_DYNARR_ASSERT(a.md.cnt > 0, msg)
#elif (DG_DYNARR_INDEX_CHECK_LEVEL == 0) || (DG_DYNARR_INDEX_CHECK_LEVEL == 1)
// no assertions that check if index is valid
#define dg__dynarr_checkidx(a,i) (void)0
#define dg__dynarr_checkidxle(a,i) (void)0
#define dg__dynarr_check_notempty(a, msg) (void)0
#else // invalid DG_DYNARR_INDEX_CHECK_LEVEL
#error Invalid index check level DG_DYNARR_INDEX_CHECK_LEVEL (must be 0-3) !
#endif // DG_DYNARR_INDEX_CHECK_LEVEL
#if (DG_DYNARR_INDEX_CHECK_LEVEL == 1) || (DG_DYNARR_INDEX_CHECK_LEVEL == 3)
// the given index, if valid, else 0
#define dg__dynarr_idx(md,i) \
(((size_t)(i) < md.cnt) ? (size_t)(i) : 0)
#elif (DG_DYNARR_INDEX_CHECK_LEVEL == 0) || (DG_DYNARR_INDEX_CHECK_LEVEL == 2)
// don't check and default to 0 if invalid, but just use the given value
#define dg__dynarr_idx(md,i) (size_t)(i)
#else // invalid DG_DYNARR_INDEX_CHECK_LEVEL
#error Invalid index check level DG_DYNARR_INDEX_CHECK_LEVEL (must be 0-3) !
#endif // DG_DYNARR_INDEX_CHECK_LEVEL
// the functions allocating/freeing memory are not implemented inline, but
// in the #ifdef DG_DYNARR_IMPLEMENTATION section
// one reason is that dg__dynarr_grow has the most code in it, the other is
// that windows has weird per-dll heaps so free() or realloc() should be
// called from code in the same dll that allocated the memory - these kind
// of wrapper functions that end up compiled into the exe or *one* dll
// (instead of inline functions compiled into everything) should ensure that.
DG_DYNARR_DEF void
dg__dynarr_free(void** p, dg__dynarr_md* md);
DG_DYNARR_DEF void
dg__dynarr_shrink_to_fit(void** arr, dg__dynarr_md* md, size_t itemsize);
// grow array to have enough space for at least min_needed elements
// if it fails (OOM), the array will be deleted, a.p will be NULL, a.md.cap and a.md.cnt will be 0
// and the functions returns 0; else (on success) it returns 1
DG_DYNARR_DEF int
dg__dynarr_grow(void** arr, dg__dynarr_md* md, size_t itemsize, size_t min_needed);
// the following functions are implemented inline, because they're quite short
// and mosty implemented in functions so the macros don't get too ugly
DG_DYNARR_INLINE void
dg__dynarr_init(void** p, dg__dynarr_md* md, void* buf, size_t buf_cap)
{
*p = buf;
md->cnt = 0;
if(buf == NULL) md->cap = 0;
else md->cap = (DG__DYNARR_SIZE_T_MSB | buf_cap);
}
DG_DYNARR_INLINE int
dg__dynarr_maybegrow(void** arr, dg__dynarr_md* md, size_t itemsize, size_t min_needed)
{
if((md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB) >= min_needed) return 1;
else return dg__dynarr_grow(arr, md, itemsize, min_needed);
}
DG_DYNARR_INLINE int
dg__dynarr_maybegrowadd(void** arr, dg__dynarr_md* md, size_t itemsize, size_t num_add)
{
size_t min_needed = md->cnt+num_add;
if((md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB) >= min_needed) return 1;
else return dg__dynarr_grow(arr, md, itemsize, min_needed);
}
DG_DYNARR_INLINE int
dg__dynarr_insert(void** arr, dg__dynarr_md* md, size_t itemsize, size_t idx, size_t n, int init0)
{
// allow idx == md->cnt to append
size_t oldCount = md->cnt;
size_t newCount = oldCount+n;
if(idx <= oldCount && dg__dynarr_maybegrow(arr, md, itemsize, newCount))
{
unsigned char* p = (unsigned char*)*arr; // *arr might have changed in dg__dynarr_grow()!
// move all existing items after a[idx] to a[idx+n]
if(idx < oldCount) memmove(p+(idx+n)*itemsize, p+idx*itemsize, itemsize*(oldCount - idx));
// if the memory is supposed to be zeroed, do that
if(init0) memset(p+idx*itemsize, 0, n*itemsize);
md->cnt = newCount;
return 1;
}
return 0;
}
DG_DYNARR_INLINE int
dg__dynarr_add(void** arr, dg__dynarr_md* md, size_t itemsize, size_t n, int init0)
{
size_t cnt = md->cnt;
if(dg__dynarr_maybegrow(arr, md, itemsize, cnt+n))
{
unsigned char* p = (unsigned char*)*arr; // *arr might have changed in dg__dynarr_grow()!
// if the memory is supposed to be zeroed, do that
if(init0) memset(p+cnt*itemsize, 0, n*itemsize);
md->cnt += n;
return 1;
}
return 0;
}
DG_DYNARR_INLINE void
dg__dynarr_delete(void** arr, dg__dynarr_md* md, size_t itemsize, size_t idx, size_t n)
{
size_t cnt = md->cnt;
if(idx < cnt)
{
if(idx+n >= cnt) md->cnt = idx; // removing last element(s) => just reduce count
else
{
unsigned char* p = (unsigned char*)*arr;
// move all items following a[idx+n] to a[idx]
memmove(p+itemsize*idx, p+itemsize*(idx+n), itemsize*(cnt - (idx+n)));
md->cnt -= n;
}
}
}
DG_DYNARR_INLINE void
dg__dynarr_deletefast(void** arr, dg__dynarr_md* md, size_t itemsize, size_t idx, size_t n)
{
size_t cnt = md->cnt;
if(idx < cnt)
{
if(idx+n >= cnt) md->cnt = idx; // removing last element(s) => just reduce count
else
{
unsigned char* p = (unsigned char*)*arr;
// copy the last n items to a[idx] - but handle the case that
// the array has less than n elements left after the deleted elements
size_t numItemsAfterDeleted = cnt - (idx+n);
size_t m = (n < numItemsAfterDeleted) ? n : numItemsAfterDeleted;
memcpy(p+itemsize*idx, p+itemsize*(cnt - m), itemsize*m);
md->cnt -= n;
}
}
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // DG__DYNARR_H
// ############## Implementation of non-inline functions ##############
#ifdef DG_DYNARR_IMPLEMENTATION
// by default, C's malloc(), realloc() and free() is used to allocate/free heap memory.
// you can #define DG_DYNARR_MALLOC, DG_DYNARR_REALLOC and DG_DYNARR_FREE
// to provide alternative implementations like Win32 Heap(Re)Alloc/HeapFree
//
#ifndef DG_DYNARR_MALLOC
#define DG_DYNARR_MALLOC(elemSize, numElems) malloc(elemSize*numElems)
// oldNumElems is not used here, but maybe you need it for your allocator
// to copy the old elements over
#define DG_DYNARR_REALLOC(ptr, elemSize, oldNumElems, newCapacity) \
realloc(ptr, elemSize*newCapacity);
#define DG_DYNARR_FREE(ptr) free(ptr)
#endif
// you can #define DG_DYNARR_OUT_OF_MEMORY to some code that will be executed
// if allocating memory fails
#ifndef DG_DYNARR_OUT_OF_MEMORY
#define DG_DYNARR_OUT_OF_MEMORY DG_DYNARR_ASSERT(0, "Out of Memory!");
#endif
#ifdef __cplusplus
extern "C" {
#endif
DG_DYNARR_DEF void
dg__dynarr_free(void** p, dg__dynarr_md* md)
{
// only free memory if it doesn't point to external memory
if(!(md->cap & DG__DYNARR_SIZE_T_MSB))
{
DG_DYNARR_FREE(*p);
*p = NULL;
md->cap = 0;
}
md->cnt = 0;
}
DG_DYNARR_DEF int
dg__dynarr_grow(void** arr, dg__dynarr_md* md, size_t itemsize, size_t min_needed)
{
size_t cap = md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB;
DG_DYNARR_ASSERT(min_needed > cap, "dg__dynarr_grow() should only be called if storage actually needs to grow!");
if(min_needed < DG__DYNARR_SIZE_T_MSB)
{
size_t newcap = (cap > 4) ? (2*cap) : 8; // allocate for at least 8 elements
// make sure not to set DG__DYNARR_SIZE_T_MSB (unlikely anyway)
if(newcap >= DG__DYNARR_SIZE_T_MSB) newcap = DG__DYNARR_SIZE_T_MSB-1;
if(min_needed > newcap) newcap = min_needed;
// the memory was allocated externally, don't free it, just copy contents
if(md->cap & DG__DYNARR_SIZE_T_MSB)
{
void* p = DG_DYNARR_MALLOC(itemsize, newcap);
if(p != NULL) memcpy(p, *arr, itemsize*md->cnt);
*arr = p;
}
else
{
void* p = DG_DYNARR_REALLOC(*arr, itemsize, md->cnt, newcap);
if(p == NULL) DG_DYNARR_FREE(*arr); // realloc failed, at least don't leak memory
*arr = p;
}
// TODO: handle OOM by setting highest bit of count and keeping old data?
if(*arr) md->cap = newcap;
else
{
md->cap = 0;
md->cnt = 0;
DG_DYNARR_OUT_OF_MEMORY ;
return 0;
}
return 1;
}
DG_DYNARR_ASSERT(min_needed < DG__DYNARR_SIZE_T_MSB, "Arrays must stay below SIZE_T_MAX/2 elements!");
return 0;
}
DG_DYNARR_DEF void
dg__dynarr_shrink_to_fit(void** arr, dg__dynarr_md* md, size_t itemsize)
{
// only do this if we allocated the memory ourselves
if(!(md->cap & DG__DYNARR_SIZE_T_MSB))
{
size_t cnt = md->cnt;
if(cnt == 0) dg__dynarr_free(arr, md);
else if((md->cap & DG__DYNARR_SIZE_T_ALL_BUT_MSB) > cnt)
{
void* p = DG_DYNARR_MALLOC(itemsize, cnt);
if(p != NULL)
{
memcpy(p, *arr, cnt*itemsize);
md->cap = cnt;
DG_DYNARR_FREE(*arr);
*arr = p;
}
}
}
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // DG_DYNARR_IMPLEMENTATION