-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_aug.py
58 lines (42 loc) · 1.75 KB
/
image_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import tensorflow as tf
import numpy as np
class RandomBrightness(tf.keras.layers.Layer):
def __init__(self, brightness_delta, **kwargs):
super(RandomBrightness, self).__init__(**kwargs)
self.brightness_delta = brightness_delta
def call(self, images, training=None):
#if not training:
# return images
brightness = np.random.uniform(self.brightness_delta[0], self.brightness_delta[1])
images = tf.image.adjust_brightness(images, brightness)
return images
class PowerLawTransform(tf.keras.layers.Layer):
def __init__(self, gamma, **kwargs):
super(PowerLawTransform, self).__init__(**kwargs)
self.gamma = gamma
def call(self, images, training=None):
#if not training:
# return images
gamma_value = np.random.uniform(self.gamma[0], self.gamma[1])
images = tf.image.adjust_gamma(images, gamma_value)
return images
class RandomSaturation(tf.keras.layers.Layer):
def __init__(self, sat, **kwargs):
super(RandomSaturation, self).__init__(**kwargs)
self.sat = sat
def call(self, images, training=None):
#if not training:
# return images
#sat_value = np.random.uniform(self.sat[0], self.sat[1])
images = tf.image.random_saturation(images, self.sat[0], self.sat[1])
return images
class RandomHue(tf.keras.layers.Layer):
def __init__(self, hue, **kwargs):
super(RandomHue, self).__init__(**kwargs)
self.hue = hue
def call(self, images, training=None):
#if not training:
# return images
#hue_value = np.random.uniform(self.hue[0], self.hue[1])
images = tf.image.random_hue(images, self.hue[0], self.hue[1])
return images