-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxop.c
551 lines (485 loc) · 13.9 KB
/
xop.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
// DESIGN NOTE: The "drive operations code" in here is executed on core1. It's
// slightly wasteful because operations busy wait most of the time. One
// reedeming quality with this design is that core0 operations can't delay
// drive operations, but frankly I chose this design because it's easier to
// write than various ways of doing async code in C. Also, I really don't have
// anything else to use core1 for? (all the high bandwidth heavy lifting is
// entirely handled by PIO/DMA)
#include <stdio.h>
#include "pico/multicore.h"
#include "base.h"
#include "pin_config.h"
#include "drive.h"
#include "controller_protocol.h"
#include "xop.h"
#include "clocked_read.h"
#include "cr8044read.h"
#define ERROR_MASK \
( (1 << GPIO_FAULT) \
| (1 << GPIO_SEEK_ERROR) \
)
#define READY_MASK \
( (1 << GPIO_UNIT_READY) \
| (1 << GPIO_UNIT_SELECTED) \
)
#define TAG_STROBE_SLEEP() sleep_us(2)
// I haven't seen anything in the docs about how long a "tag pin" should be
// held high before the drive registers the signal. For specific
// operations/pins I'm seeing quotes of 250 ns to 1.0 µs, so 2.0 µs should be
// abundant?
absolute_time_t job_begin_time_us;
absolute_time_t job_duration_us;
volatile enum xop_status status;
unsigned current_cylinder_according_to_the_controller;
static void unit0_select_tag(void)
{
gpio_put(GPIO_UNIT_SELECT_TAG, 1);
}
static void set_bits(unsigned value)
{
#define PUT(N) gpio_put(GPIO_BIT ## N, value & (1<<N))
PUT(0); PUT(1); PUT(2); PUT(3); PUT(4);
PUT(5); PUT(6); PUT(7); PUT(8); PUT(9);
#undef PUT
}
static void clear_output(void)
{
gpio_put(GPIO_TAG1, 0);
gpio_put(GPIO_TAG2, 0);
gpio_put(GPIO_TAG3, 0);
set_bits(0);
}
#define TAG_SLEEP_US (10)
static void tag1_cylinder(unsigned cylinder)
{
clear_output();
set_bits(cylinder);
sleep_us(TAG_SLEEP_US);
gpio_put(GPIO_TAG1, 1);
sleep_us(TAG_SLEEP_US);
clear_output();
// NOTE: does not set current_cylinder_according_to_the_controller
}
static void tag2_head(unsigned head)
{
clear_output();
set_bits(head);
gpio_put(GPIO_TAG2, 1);
sleep_us(TAG_SLEEP_US);
clear_output();
}
static void tag3_ctrl(unsigned ctrl)
{
clear_output();
set_bits(ctrl);
sleep_us(TAG_SLEEP_US);
gpio_put(GPIO_TAG3, 1);
}
static void tag3_ctrl_strobe(unsigned ctrl)
{
tag3_ctrl(ctrl);
sleep_us(TAG_SLEEP_US);
clear_output();
}
static void BEGIN(void)
{
job_begin_time_us = get_absolute_time();
}
__attribute__ ((noreturn))
static void job_halt(void)
{
job_duration_us = get_absolute_time() - job_begin_time_us;
while (1) {}
}
__attribute__ ((noreturn))
static void DONE(void)
{
status = XST_DONE;
job_halt();
}
__attribute__ ((noreturn))
static void ERROR(enum xop_status error_code)
{
status = error_code;
job_halt();
}
static void check_drive_error(void)
{
unsigned pins = gpio_get_all();
if ((pins & ERROR_MASK) != 0) ERROR(XST_ERR_DRIVE_ERROR);
if ((pins & READY_MASK) != READY_MASK) ERROR(XST_ERR_DRIVE_NOT_READY);
}
static void pin_mask_wait(unsigned mask, unsigned value, unsigned timeout_us, int check_error)
{
const absolute_time_t t0 = get_absolute_time();
while (1) {
if (check_error) check_drive_error();
if ((gpio_get_all() & mask) == value) break;
if ((get_absolute_time() - t0) > timeout_us) {
ERROR(XST_ERR_TIMEOUT);
}
sleep_us(1);
}
}
static void pin_wait(unsigned gpio, unsigned value, unsigned timeout_us, int check_error)
{
pin_mask_wait((1<<gpio), value ? (1<<gpio) : 0, timeout_us, check_error);
}
static void pin_wait_for_one(unsigned gpio, unsigned timeout_us, int check_error)
{
pin_wait(gpio, 1, timeout_us, check_error);
}
static void pin_wait_for_zero(unsigned gpio, unsigned timeout_us, int check_error)
{
pin_wait(gpio, 0, timeout_us, check_error);
}
static void return_to_normal(void)
{
current_cylinder_according_to_the_controller = 0;
if ((gpio_get_all() & (1 << GPIO_FAULT))) {
tag3_ctrl_strobe(TAG3BIT_FAULT_CLEAR);
pin_wait_for_zero(GPIO_FAULT, 1000000, 0);
}
tag3_ctrl(TAG3BIT_RTZ);
sleep_us(500000);
clear_output();
}
static void select_unit0(void)
{
unit0_select_tag();
pin_wait_for_one(GPIO_UNIT_SELECTED, 100000, 0);
check_drive_error();
}
static unsigned get_read_adjustment_bits(int servo_offset, int data_strobe_delay)
{
unsigned ctrl = 0;
if (servo_offset != 0) {
ctrl |=
(servo_offset > 0 ? TAG3BIT_SERVO_OFFSET_POSITIVE
: servo_offset < 0 ? TAG3BIT_SERVO_OFFSET_NEGATIVE
: 0)
;
}
if (data_strobe_delay != 0) {
ctrl |=
(data_strobe_delay > 0 ? TAG3BIT_DATA_STROBE_LATE
: data_strobe_delay < 0 ? TAG3BIT_DATA_STROBE_EARLY
: 0);
}
return ctrl;
}
static void select_cylinder(unsigned cylinder)
{
tag1_cylinder(cylinder);
// Assuming it might take a little while before ON_CYLINDER and
// SEEK_END go low?
sleep_us(1000);
// NOTE: the drive should signal SEEK_ERROR (which IS caught by
// pin_mask_wait()) if the seek does not complete within 500ms
const unsigned bits = (1<<GPIO_ON_CYLINDER) | (1<<GPIO_SEEK_END);
// NOTE: drive doc says that "Seek End is a combination of ON CYL or
// SEEK ERROR" suggesting it's a simple OR-gate of those signals. But
// it's a good sanity check nevertheless (cable/drive may be broken).
pin_mask_wait(bits, bits, 1000000, 1);
current_cylinder_according_to_the_controller = cylinder;
}
// seek in single-cylinder steps; the drive divides seeking into two phases:
// coarse seek (acceleration, coasting, deacceleration) and fine seek. as far
// as we can tell from the schematics, single-stepping skips coarse seeking
// entirely. so because coarse seeking both takes up a significant fraction of
// the ICs, and also because it is finicky (subject to a lot of tuning), there
// are a lot of things that can go wrong with it. in "real-life" we had a drive
// that could only single-step.
static void broken_seek(unsigned cylinder)
{
for (;;) {
if (cylinder > current_cylinder_according_to_the_controller) {
select_cylinder(current_cylinder_according_to_the_controller + 1);
} else if (cylinder < current_cylinder_according_to_the_controller) {
select_cylinder(current_cylinder_according_to_the_controller - 1);
} else {
break;
}
}
}
static void select_head(unsigned head)
{
check_drive_error();
tag2_head(head);
}
static inline void wait_for_index(int skip_checks)
{
//pin_wait_for_zero(GPIO_INDEX, FREQ_IN_MICROS(DRIVE_RPS)/10, !skip_checks);
//pin_wait_for_one(GPIO_INDEX, FREQ_IN_MICROS(DRIVE_RPS/3), !skip_checks); // wait at most 3 revolutions
pin_wait_for_zero(GPIO_INDEX, 1000000, !skip_checks);
pin_wait_for_one(GPIO_INDEX, 1000000, !skip_checks);
}
static inline void wait_for_sector(void)
{
const int mask = (1 << GPIO_SECTOR);
{
int match_count = 0;
const int debounce_count = 5;
while (match_count < debounce_count) {
const int is_zero = (gpio_get_all() & mask) == 0;
if (is_zero) {
match_count++;
} else {
match_count = 0;
}
}
}
// wait for one
while ((gpio_get_all() & mask) == 0);
}
static inline void reset(void)
{
multicore_reset_core1(); // waits until core1 is down
}
static inline void reset_and_kill_output(void)
{
reset();
sleep_us(1);
clear_output();
}
static void run(void(*fn)(void))
{
status = XST_RUNNING;
multicore_launch_core1(fn);
}
enum xop_status poll_xop_status(void)
{
return status;
}
absolute_time_t xop_duration_us(void)
{
return job_duration_us;
}
void terminate_op(void)
{
reset_and_kill_output();
}
union {
struct {
int fail;
} blink_test;
struct {
unsigned cylinder;
} select_cylinder;
struct {
unsigned cylinder;
} broken_seek;
struct {
unsigned head;
} select_head;
struct {
unsigned ctrl;
} tag3_strobe;
struct {
int servo_offset;
int data_strobe_delay;
} read_enable;
struct {
unsigned buffer_index;
unsigned n_32bit_words;
unsigned index_sync;
unsigned skip_checks;
} read_data;
struct {
unsigned n_32bit_words_per_track;
unsigned cylinder0;
unsigned cylinder1;
unsigned head_set;
int servo_offset;
int data_strobe_delay;
} batch_read;
} job_args;
////////////////////////////////////
// reset ///////////////////////////
void job_reset(void)
{
BEGIN();
return_to_normal();
DONE();
}
void xop_reset(void)
{
reset();
run(job_reset);
}
////////////////////////////////////
// blink test //////////////////////
void job_blink_test(void)
{
BEGIN();
for (int i = 0; i < 15; i++) {
gpio_put(LED_PIN, 1);
sleep_ms(50);
gpio_put(LED_PIN, 0);
sleep_ms(50);
}
if (!job_args.blink_test.fail) {
DONE();
} else {
ERROR(XST_ERR_TEST);
}
}
void xop_blink_test(int fail)
{
reset();
job_args.blink_test.fail = fail;
run(job_blink_test);
}
////////////////////////////////////
// select unit 0 ///////////////////
void job_select_unit0(void)
{
BEGIN();
select_unit0();
DONE();
}
void xop_select_unit0(void)
{
reset_and_kill_output();
run(job_select_unit0);
}
/////////////////////////////////////////////////////////////////////////////
// tag3 / short strobe //////////////////////////////////////////////////////
void job_tag3_strobe(void)
{
BEGIN();
tag3_ctrl_strobe(job_args.tag3_strobe.ctrl);
DONE();
}
void xop_tag3_strobe(unsigned ctrl)
{
reset_and_kill_output();
job_args.tag3_strobe.ctrl = ctrl;
run(job_tag3_strobe);
}
/////////////////////////////////////////////////////////////////////////////
// select cylinder //////////////////////////////////////////////////////////
void job_select_cylinder(void)
{
BEGIN();
select_cylinder(job_args.broken_seek.cylinder);
DONE();
}
void xop_select_cylinder(unsigned cylinder)
{
reset_and_kill_output();
job_args.broken_seek.cylinder = cylinder;
run(job_select_cylinder);
}
/////////////////////////////////////////////////////////////////////////////
// "broken seek" ////////////////////////////////////////////////////////////
void job_broken_seek(void)
{
BEGIN();
broken_seek(job_args.broken_seek.cylinder);
DONE();
}
void xop_broken_seek(unsigned cylinder)
{
reset_and_kill_output();
job_args.broken_seek.cylinder = cylinder;
run(job_broken_seek);
}
/////////////////////////////////////////////////////////////////////////////
// select head //////////////////////////////////////////////////////////////
void job_select_head(void)
{
BEGIN();
select_head(job_args.select_head.head);
DONE();
}
void xop_select_head(unsigned head)
{
reset_and_kill_output();
job_args.select_head.head = head;
run(job_select_head);
}
/////////////////////////////////////////////////////////////////////////////
// read data ////////////////////////////////////////////////////////////////
unsigned xop_read_data(unsigned n_32bit_words, unsigned index_sync, unsigned skip_checks)
{
PANIC(PANIC_XXX); // doesn't currently make sense
}
/////////////////////////////////////////////////////////////////////////////
// batch read ///////////////////////////////////////////////////////////////
void job_batch_read(void)
{
BEGIN();
check_drive_error();
const unsigned cylinder0 = job_args.batch_read.cylinder0;
const unsigned cylinder1 = job_args.batch_read.cylinder1;
const unsigned head_set = job_args.batch_read.head_set;
//const unsigned n_32bit_words_per_track = job_args.batch_read.n_32bit_words_per_track;
const int arg_servo_offset = job_args.batch_read.servo_offset;
const int arg_data_strobe_delay = job_args.batch_read.data_strobe_delay;
int servo_offset0 = arg_servo_offset == ENTIRE_RANGE ? -1 : arg_servo_offset;
if (servo_offset0 < -1) servo_offset0 = -1;
int servo_offset1 = arg_servo_offset == ENTIRE_RANGE ? 1 : arg_servo_offset;
if (servo_offset1 > 1) servo_offset1 = 1;
int data_strobe_delay0 = arg_data_strobe_delay == ENTIRE_RANGE ? -1 : arg_data_strobe_delay;
if (data_strobe_delay0 < -1) data_strobe_delay0 = -1;
int data_strobe_delay1 = arg_data_strobe_delay == ENTIRE_RANGE ? 1 : arg_data_strobe_delay;
if (data_strobe_delay1 > 1) data_strobe_delay1 = 1;
for (unsigned cylinder = cylinder0; cylinder <= cylinder1; cylinder++) {
select_cylinder(cylinder);
// The CDC docs lists "read while off cylinder" as one of the
// conditions that can trigger a FAULT. Although the following
// section suggests the fault is only generated if requested
// while seeking?:
// "(Read or Write) and Off Cylinder Fault"
// "This fault is generated if the drive is in an Off
// Cylinder condition and it receives a Read or Write gate
// from the controller."
unsigned mask = 1;
for (unsigned head = 0; head < DRIVE_HEAD_COUNT; head++, mask <<= 1) {
if ((head_set & mask) == 0) continue;
select_head(head);
set_bits(0);
gpio_put(GPIO_TAG3, 1);
for (int servo_offset = servo_offset0; servo_offset <= servo_offset1; servo_offset++) {
for (int data_strobe_delay = data_strobe_delay0; data_strobe_delay <= data_strobe_delay1; data_strobe_delay++) {
set_bits(get_read_adjustment_bits(servo_offset, data_strobe_delay));
const absolute_time_t t0 = get_absolute_time();
while (!can_allocate_buffer()) {
if ((get_absolute_time() - t0) > 10000000) {
ERROR(XST_ERR_TIMEOUT);
}
sleep_us(5);
}
const unsigned buffer_index = allocate_buffer(MAX_DATA_BUFFER_SIZE);
snprintf(
get_buffer_filename(buffer_index),
CLOCKED_READ_BUFFER_FILENAME_MAX_LENGTH,
"cylinder%.4d-head%d-servo_%s-strobe_%s.cr8044nrz", cylinder, head,
servo_offset == -1 ? "negative" :
servo_offset == 1 ? "positive" :
"neutral"
,
data_strobe_delay == -1 ? "early" :
data_strobe_delay == 1 ? "late" :
"neutral");
cr8044read_execute(get_buffer_data(buffer_index));
wrote_buffer(buffer_index);
}
}
clear_output();
}
}
DONE();
}
void xop_read_batch(unsigned cylinder0, unsigned cylinder1, unsigned head_set, unsigned n_32bit_words_per_track, int servo_offset, int data_strobe_delay)
{
reset_and_kill_output();
job_args.batch_read.n_32bit_words_per_track = n_32bit_words_per_track;
job_args.batch_read.cylinder0 = cylinder0;
job_args.batch_read.cylinder1 = cylinder1;
job_args.batch_read.head_set = head_set;
job_args.batch_read.servo_offset = servo_offset;
job_args.batch_read.data_strobe_delay = data_strobe_delay;
run(job_batch_read);
}