-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize.py
51 lines (40 loc) · 1.41 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
from PIL import Image
from easydict import EasyDict as edict
from torch.backends import cudnn
from config import config, default, dataset_config
from solvers import *
from data_loaders import *
default.network = 'MULTICYCLEGAN'
#default.network = 'STARGAN'
default.dataset_choice = ['MAKEUP']
#default.dataset_choice = ['CELEBA']
default.model_base = 'RES'
default.loss_chosen = 'normal'
default.gpu_ids = [0,1,2]
config_default = config
def train_net():
# enable cudnn
cudnn.benchmark = True
# get the DataLoader
data_loaders = eval("get_loader_" + config.network)(default.dataset_choice, dataset_config, config, mode="test")
#get the solver
solver = eval("Solver_" + config.network +"_VIS")(default.dataset_choice, data_loaders, config, dataset_config)
solver.visualize()
if __name__ == '__main__':
print("Call with args:")
print(default)
config = config_default[default.network]
config.network = default.network
config.model_base = default.model_base
config.gpu_ids = default.gpu_ids
# Create the directories if not exist
if not os.path.exists(config.log_path):
os.makedirs(config.log_path)
if not os.path.exists(config.vis_path):
os.makedirs(config.vis_path)
if not os.path.exists(config.snapshot_path):
os.makedirs(config.snapshot_path)
if not os.path.exists(config.data_path):
print("No datapath!!")
train_net()