-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore.py
61 lines (51 loc) · 2.36 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# This script generates the scoring and schema files
# Creates the schema, and holds the init and run functions needed to
# operationalize the Linear Regression sample
# Import data collection library. Only supported for docker mode.
# Functionality will be ignored when package isn't found
try:
from azureml.datacollector import ModelDataCollector
except ImportError:
print("Data collection is currently only supported in docker mode. May be disabled for local mode.")
# Mocking out model data collector functionality
class ModelDataCollector(object):
def nop(*args, **kw): pass
def __getattr__(self, _): return self.nop
def __init__(self, *args, **kw): return None
pass
import os
# Prepare the web service definition by authoring
# init() and run() functions. Test the functions
# before deploying the web service.
def init():
from sklearn.externals import joblib
global model, inputs_dc, prediction_dc
# The model we created in our linear_reg.py file is now a model.pkl
model = joblib.load('model.pkl')
inputs_dc = ModelDataCollector('model.pkl', identifier="inputs" )
prediction_dc = ModelDataCollector('model.pkl', identifier="prediction")
# Uses the model and the input data to return a prediction
def run(input_df):
global clf2, inputs_dc, prediction_dc
try:
prediction = model.predict(input_df)
# Archive model inputs and predictions from a web service. View the collected data from your storage account
# More info here: https://docs.microsoft.com/en-us/azure/machine-learning/preview/how-to-use-model-data-collection
inputs_dc.collect (input_df)
prediction_dc.collect(prediction)
return prediction
except Exception as e:
return (str(e))
# Generate service_schema.json
def main():
from azureml.api.schema.dataTypes import DataTypes
from azureml.api.schema.sampleDefinition import SampleDefinition
from azureml.api.realtime.services import generate_schema
import pandas
# Turn on data collection debug mode to view output in stdout
os.environ["AML_MODEL_DC_DEBUG"] = 'true'
inputs = {"input_df": SampleDefinition(DataTypes.PANDAS, yourinputdataframe)}
generate_schema(run_func=run, inputs=inputs, filepath='service_schema.json')
print("Schema generated")
if __name__ == "__main__":
main()