-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
500 lines (404 loc) · 21.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import sys
import os
import argparse
import torch
import time
import glob
import numpy as np
import libs.architecture as architecture
from libs.utils import dataloaders as dl
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import libs.architecture.routines as r
from libs.architecture.util import ScheduledOptim
from torch.optim.adam import Adam
import random
from tqdm import tqdm
from libs.utils.train_util import *
#bu dosya çalışırken oluşan uyarıların konsolda çıkmaması için aşağıdaki satırı çıkmasın
import warnings
warnings.filterwarnings("ignore")
warnings.simplefilter("ignore", UserWarning)
warnings.simplefilter("ignore", DeprecationWarning)
warnings.simplefilter("ignore", FutureWarning)
coco_images = 'data/coco/train_val'
caption_dir = 'data/coco'
vqa_dir = 'data/vqa'
model_save_path = 'checkpoints'
hmdb_data_dir='data/hmdb'
hmdb_process_dir='data/hmdbprocess'
penn_data_dir='data/penn'
def train(shared_model, task, batch_size, train_steps, gpu_id, start, restore, counter, barrier=None, save_interval=None,
eval_interval=None, log=True):
"""
Train function that trains a given shared model on a given task.
Args:
shared_model (torch.nn.Module): The shared model to be trained.
task (str): The task to be trained on.
batch_size (int): The batch size to be used during training.
train_steps (int): The number of training steps to be performed.
gpu_id (int): The ID of the GPU to be used for training.
start (int): The starting step for training.
restore (bool): Whether to restore the model from a previous checkpoint.
counter (torch.multiprocessing.Value): A shared counter to keep track of the current training step.
barrier (torch.multiprocessing.Barrier, optional): A synchronization barrier to be used during training.
save_interval (int, optional): The interval at which to save the model during training.
eval_interval (int, optional): The interval at which to evaluate the model during training.
log (bool, optional): Whether to log the training progress.
Returns:
None
"""
# Create log directory if it does not exist
log_dir = 'logs/%s' % task
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# Create summary writer if logging is enabled
if log:
summary_writer = SummaryWriter(log_dir)
# Set random seed
torch.manual_seed(int(random.random() * 1000))
# Create local model
if gpu_id > 0:
model = architecture.UnifiedTransformer(gpu_id=gpu_id)
model = model.cuda(gpu_id)
else:
# For GPU 0, use the shared model always
model = shared_model
# Get data loaders and optimizer based on task
if task == 'caption':
train_dl, val_dl = dl.coco_cap_batchgen(caption_dir='data/coco', image_dir='data/coco/train_val',
num_workers=8, batch_size=batch_size)
optimizer = ScheduledOptim(
Adam(
filter(lambda x: x.requires_grad, shared_model.parameters()),
betas=(0.9, 0.98), eps=1e-09),
512, 16000, restore, init_lr=0.02)
elif task == 'vqa':
train_dl, val_dl = dl.vqa_batchgen(vqa_dir='data/vqa', image_dir='data/coco/train_val', num_workers=8,
batch_size=batch_size)
optimizer = ScheduledOptim(
Adam(
filter(lambda x: x.requires_grad, shared_model.parameters()),
betas=(0.9, 0.98), eps=1e-09),
512, 16000, restore, max_lr=0.0001, init_lr=0.02)
elif task == 'hmdb':
train_dl, val_dl = dl.hmdb_batchgen(hmdb_data_dir, hmdb_process_dir,
num_workers=8, batch_size=batch_size, test_batch_size=int(batch_size / 4),
clip_len=16)
optimizer = ScheduledOptim(
Adam(
filter(lambda x: x.requires_grad, shared_model.parameters()),
betas=(0.9, 0.98), eps=1e-09),
512, 16000, restore, max_lr=0.0001, init_lr=0.02)
elif task == 'penn':
train_dl, val_dl, test_dl = dl.penn_dataloader(penn_data_dir, batch_size=batch_size,
test_batch_size=int(batch_size / 2), num_workers=4,
vocab_file='conf/penn_vocab.json')
optimizer = ScheduledOptim(
Adam(
filter(lambda x: x.requires_grad, shared_model.parameters()),
betas=(0.9, 0.98), eps=1e-09),
512, 16000, restore, init_lr=0.02)
# Set model to training mode
model = model.train()
for i in range(start, train_steps):
model.zero_grad()
if barrier is not None:
barrier.wait()
if gpu_id > 0:
with torch.cuda.device(gpu_id):
model.load_state_dict(shared_model.state_dict())
# Calculate loss
step = counter.increment()
if task == 'caption':
if (log and eval_interval is not None and i % eval_interval == 0):
model = model.eval()
val_loss=0
val_acc=0
print('-' * 100)
print('Evaluation step')
for b in tqdm(val_dl):
imgs = b['img']
if gpu_id>=0:
imgs=imgs.cuda(device=gpu_id)
captions = b['cap']
# In val mode we do not pass the targets for prediction. We use it only for loss calculation
_,loss,acc = r.image_caption(model, imgs, targets=captions, mode='val',return_str_preds=True)
val_loss += float(loss.detach().cpu().numpy())
val_acc+=acc
val_loss/=len(val_dl)
val_acc=(val_acc/len(val_dl))
summary_writer.add_scalar('Val_loss', val_loss, step)
print('Step %d, COCO validation loss: %f, Accuracy %f %%' % (step, val_loss,val_acc))
print('-' * 100)
model = model.train()
batch = next(DL)
if gpu_id >= 0:
imgs = batch['img'].cuda(device=gpu_id)
else:
imgs = batch['img']
captions = batch['cap']
_, loss,acc = r.image_caption(model, imgs, targets=captions)
loss.backward()
loss=loss.detach()
if log:
summary_writer.add_scalar('Loss', loss, step)
print('Step %d, Caption Loss: %f, Accuracy: %f %%' % (step, loss,acc))
elif task == 'vqa':
# If it's time to evaluate the model
if (log and eval_interval is not None and i % eval_interval == 0):
# Set the model to evaluation mode
model = model.eval()
# Initialize the validation loss and accuracy
val_loss = 0
val_acc = 0
# Print the evaluation step
print('-' * 100)
print('Evaluation step')
# Loop through the validation data loader
for val_batch in tqdm(val_dl):
# Get the images, questions, and answers from the batch
val_imgs = val_batch['img']
val_answers = val_batch['ans']
# Move the data to the GPU if necessary
if gpu_id >= 0:
val_imgs = val_imgs.cuda(device=gpu_id)
val_answers = val_answers.cuda(device=gpu_id)
# Get the predicted answers, loss, and accuracy for the batch
val_preds, val_batch_loss, val_batch_acc = r.vqa(model, val_imgs, val_batch['ques'],
targets=val_answers, mode='val',
return_str_preds=True)
# Add the batch loss to the total validation loss
val_loss += float(val_batch_loss.detach().cpu().numpy())
# Add the batch accuracy to the total validation accuracy
val_acc += val_batch_acc
# Calculate the average validation loss and accuracy
val_loss /= len(val_dl)
val_acc = (val_acc / len(val_dl))
# Log the validation loss
summary_writer.add_scalar('Val_loss', val_loss, step)
# Print the validation loss and accuracy
print('Step %d, VQA validation loss: %f, Accuracy %f %%' % (step, val_loss, val_acc))
print('-' * 100)
# Set the model back to training mode
model = model.train()
# Continue to the next iteration
continue
# Get the images, questions, and answers from the batch
train_imgs = batch['img']
train_answers = batch['ans']
train_questions = batch['ques']
# Move the data to the GPU if necessary
if gpu_id >= 0:
train_imgs = train_imgs.cuda(device=gpu_id)
train_answers = train_answers.cuda(device=gpu_id)
# Get the predicted answers, loss, and accuracy for the batch
train_preds, train_batch_loss, train_batch_acc = r.vqa(model, train_imgs, train_questions,
targets=train_answers, return_str_preds=True)
# Backpropagate the loss
train_batch_loss.backward()
# Detach the loss
train_batch_loss = train_batch_loss.detach()
# Log the loss if necessary
if log:
summary_writer.add_scalar('Loss', train_batch_loss, step)
# Print the loss and accuracy
print('Step %d, VQA Loss: %f, Accuracy: %f %%' % (step, train_batch_loss, train_batch_acc))
# If the task is HMDB
elif task == 'hmdb':
# If it's time to evaluate the model
if (log and eval_interval is not None and i % eval_interval == 0):
# Set the model to evaluation mode
model = model.eval()
# Initialize the validation loss and accuracy
val_loss = 0
val_acc = 0
# Print the evaluation step
print('-' * 100)
print('Evaluation step')
# Loop through the validation data loader
for val_batch in tqdm(val_dl):
# Get the videos and labels from the batch
val_vids, val_labels = val_batch
# Move the data to the GPU if necessary
if gpu_id >= 0:
val_vids = val_vids.cuda(device=gpu_id)
val_labels = val_labels.cuda(device=gpu_id)
# Get the predicted labels, loss, and accuracy for the batch
val_preds, val_batch_loss, val_batch_acc = r.hmdb(model, val_vids, targets=val_labels, mode='val')
# Add the batch loss to the total validation loss
val_loss += float(val_batch_loss.detach().cpu().numpy())
# Add the batch accuracy to the total validation accuracy
val_acc += val_batch_acc
# Calculate the average validation loss and accuracy
val_loss /= len(val_dl)
val_acc = (val_acc / len(val_dl))
# Log the validation loss
summary_writer.add_scalar('Val_loss', val_loss, step)
# Print the validation loss and accuracy
print('Step %d, HMDB validation loss: %f, Accuracy %f %%' % (step, val_loss, val_acc))
print('-' * 100)
# Set the model back to training mode
model = model.train()
# Continue to the next iteration
continue
# Get the videos and labels from the batch
train_vids, train_labels = batch
# Move the data to the GPU if necessary
if gpu_id >= 0:
train_vids = train_vids.cuda(device=gpu_id)
train_labels = train_labels.cuda(device=gpu_id)
# Get the predicted labels, loss, and accuracy for the batch
train_preds, train_batch_loss, train_batch_acc = r.hmdb(model, train_vids, targets=train_labels,
return_str_preds=True)
# Backpropagate the loss
train_batch_loss.backward()
# Detach the loss
train_batch_loss = train_batch_loss.detach()
# Log the loss if necessary
if log:
summary_writer.add_scalar('Loss', train_batch_loss, step)
# Print the loss and accuracy
print('Step %d, HMDB Loss: %f, Accuracy: %f %%' % (step, train_batch_loss, train_batch_acc))
# If the task is PENN
elif task == 'penn':
# If it's time to evaluate the model
if (log and eval_interval is not None and i % eval_interval == 0):
# Set the model to evaluation mode
model = model.eval()
# Initialize the validation loss and accuracy
val_loss = 0
val_acc = 0
# Print the evaluation step
print('-' * 100)
print('Evaluation step')
# Loop through the validation data loader
for val_batch in tqdm(test_dl):
# Get the inputs and targets from the batch
val_inputs = val_batch['text']
val_targets = val_batch['tokens']
val_pad_id = val_batch['pad_id']
val_pad_mask = val_batch['pad_mask']
# Move the data to the GPU if necessary
if gpu_id >= 0:
val_targets = val_targets.to(gpu_id)
val_pad_mask = val_pad_mask.to(gpu_id)
# Get the predicted targets, loss, and accuracy for the batch
val_preds, val_batch_loss, val_batch_acc = r.penn(model, val_inputs, target_pad_mask=val_pad_mask,
pad_id=val_pad_id, targets=val_targets,
mode='val', return_str_preds=True)
# Detach the loss
val_batch_loss = val_batch_loss.detach()
# Add the batch loss to the total validation loss
val_loss += float(val_batch_loss.cpu().numpy())
# Add the batch accuracy to the total validation accuracy
val_acc += val_batch_acc
# Calculate the average validation loss and accuracy
val_loss /= len(val_dl)
val_acc = (val_acc / len(val_dl))
# Log the validation loss
summary_writer.add_scalar('Val_loss', val_loss, step)
# Print the validation loss and accuracy
print('Step %d, PENN validation loss: %f, Accuracy %f %%' % (step, val_loss, val_acc))
print('-' * 100)
# Set the model back to training mode
model = model.train()
# Get the inputs and targets from the batch
train_inputs = batch['text']
train_targets = batch['tokens']
train_pad_id = batch['pad_id']
train_pad_mask = batch['pad_mask']
# Move the data to the GPU if necessary
if gpu_id >= 0:
train_targets = train_targets.to(gpu_id)
train_pad_mask = train_pad_mask.to(gpu_id)
# Get the predicted targets, loss, and accuracy for the batch
train_preds, train_batch_loss, train_batch_acc = r.penn(model, train_inputs, pad_id=train_pad_id,
targets=train_targets,
target_pad_mask=train_pad_mask)
# Backpropagate the loss
train_batch_loss.backward()
# Detach the loss
train_batch_loss = train_batch_loss.detach()
# Log the loss if necessary
if log:
summary_writer.add_scalar('Loss', train_batch_loss, step)
# Print the loss and accuracy
print('Step %d, PENN Loss: %f, Accuracy: %f %%' % (step, train_batch_loss, train_batch_acc))
# If the GPU ID is greater than 0, ensure shared gradients
if gpu_id > 0:
ensure_shared_grads(model, shared_model, gpu_id)
# Take a step with the optimizer
optimizer.step()
# Save the model if necessary
if (save_interval is not None and (i + 1) % save_interval == 0):
shared_model.save(model_save_path, step)
# Flush the stdout buffer
sys.stdout.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='UnifiedTransformer training script.')
parser.add_argument('n_iters', help='Number of iterations to train.')
parser.add_argument('tasks', help='List of tasks seperated by comma.')
parser.add_argument('batch_sizes', help='List of batch size for each task seperated by comma')
parser.add_argument('--n_jobs', default=1, help='Number of asynchronous jobs to run for each task.')
parser.add_argument('--n_gpus', default=1, help='Number of GPUs to use')
parser.add_argument('--save_interval', default=100, help='Number of iterations after which to save the model.')
parser.add_argument('--restore', default=-1, help='Step from which to restore model training')
parser.add_argument('--restore_last', help='Restore the latest version of the model.', action='store_true')
parser.add_argument('--eval_interval', help='Interval after which to evaluate on the test/val set.', default=1000)
args = parser.parse_args()
torch.manual_seed(47)
mp.set_start_method('spawn',force=True)
n_iters = int(args.n_iters)
n_jobs = int(args.n_jobs)
tasks=args.tasks
batch_sizes=args.batch_sizes
save_interval = int(int(args.save_interval) / n_jobs)
eval_interval = int(int(args.eval_interval) / n_jobs)
if args.restore_last == True:
ckpts = glob.glob(os.path.join(model_save_path, '*'))
iters = [int(os.path.basename(c)) for c in ckpts]
if len(iters) != 0:
restore = max(iters)
else:
restore = 0
else:
restore = int(args.restore)
tasks=tasks.split(',')
tasks=[t.strip() for t in tasks]
batch_sizes=batch_sizes.split(',')
batch_sizes=[int(b.strip()) for b in batch_sizes]
if len(tasks)!=len(batch_sizes):
raise Exception('Number of tasks provided does not match the number of batch sizes provided.')
n_gpus = int(args.n_gpus)
n_tasks = len(tasks) * n_jobs
shared_model = architecture.UnifiedTransformer(gpu_id=0)
if restore != -1:
shared_model.restore(model_save_path, restore)
else:
restore=0
shared_model=shared_model.to(0)
shared_model.share_memory()
counters = [Counter(restore) for i in range(len(tasks))]
barrier = mp.Barrier(n_tasks)
start = int(restore / n_jobs)
# Declare training processes for multi-gpu hogwild training
processes = []
for i in range(n_tasks):
#If more than one GPU is used, use first GPU only for model sharing
if n_gpus>1:
gpu_id=i%n_gpus
else:
gpu_id=0
process = mp.Process(target=train, args=(shared_model, tasks[i % len(tasks)], batch_sizes[i % len(tasks)],
int(n_iters / n_jobs),
gpu_id, start, restore, counters[i % len(tasks)], barrier,
(save_interval if i == 0 else None),
(eval_interval if i < len(tasks) else None),
(True if i < len(tasks) else False)))
process.start()
processes.append(process)
for p in processes:
p.join()