-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
317 lines (261 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import warnings
warnings.filterwarnings(action='ignore')
import wandb
import argparse
import numpy as np
import pandas as pd
import os.path as osp
from tqdm import tqdm
from sklearn import metrics
from adamp import AdamP
from cosine_annealing_warmup import CosineAnnealingWarmupRestarts
import torch
import torch.nn as nn
from torch.cuda.amp import autocast, GradScaler
from dataset import create_data_loader, preprocess_df
from model import ClassificationModel
from utils import set_seeds, get_exp_dir, save_config, str2bool
from set_wandb import wandb_init
def run_train(model, train_loader, val_loader, criterion, crit_aux, optimizer, scheduler, args):
if val_loader == None:
only_train = True
assert args.sched != 'reduce'
else:
only_train = False
scaler = GradScaler()
best_score = 0.0
best_loss = 999999.0
for epoch in range(1, args.epochs+1):
print('-' * 10)
print(f'Epoch {epoch}/{args.epochs}')
if epoch == 1:
model.img_feature_extractor.requires_grad('back', False)
if epoch == args.img_back_freeze + 1:
model.img_feature_extractor.requires_grad('back', True)
model.train()
pred_labels_proba = []
true_labels = []
train_loss = []
for img, tab, label in tqdm(iter(train_loader)):
true_labels += label.tolist()
img = img.float().to(args.device)
tab = tab.float().to(args.device)
label = label.float().to(args.device)
optimizer.zero_grad()
if args.amp:
with autocast():
if args.cls_return == 'baseline':
model_pred = model(img, tab)
elif args.cls_return == 'aux':
model_pred, img_pred, tab_pred = model(img, tab)
loss = 0
for i in range(len(criterion)):
loss += args.crit_coef[i] * criterion[i](model_pred, label.reshape(-1,1))
if len(crit_aux):
loss += args.crit_aux_coef[0] * crit_aux[0](img_pred, label.reshape(-1,1))
loss += args.crit_aux_coef[1] * crit_aux[1](tab_pred, label.reshape(-1,1))
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
scaler.step(optimizer)
scaler.update()
train_loss.append(loss.item())
if not args.cls_last_sigmoid:
model_pred = torch.sigmoid(model_pred)
model_pred = model_pred.squeeze(1).to('cpu')
pred_labels_proba += model_pred.tolist()
pred_labels = np.where(np.array(pred_labels_proba) > args.pred_thres, 1, 0)
train_acc = metrics.accuracy_score(y_true=true_labels, y_pred=pred_labels)
train_f1 = metrics.f1_score(y_true=true_labels, y_pred=pred_labels, average='macro', zero_division=1)
train_pr = metrics.precision_score(y_true=true_labels, y_pred=pred_labels, average='macro', zero_division=1)
train_rc = metrics.recall_score(y_true=true_labels, y_pred=pred_labels, average='macro', zero_division=1)
train_roc_auc = metrics.roc_auc_score(y_true=true_labels, y_score=pred_labels_proba, average='macro')
if not only_train:
val_loss, val_acc, val_f1, val_pr, val_rc, val_roc_auc = validation(model, criterion, crit_aux, val_loader, args)
wandb.log({'learning_rate': scheduler.optimizer.param_groups[0]['lr']}, commit=False)
if args.sched == 'reduce':
scheduler.step(val_loss)
else:
scheduler.step()
if not only_train:
if args.save_metric == 'f1':
if best_score < val_f1:
best_score = val_f1
torch.save(model.state_dict(), osp.join(args.work_dir, 'best.pt'))
elif args.save_metric == 'loss':
if best_loss > val_loss:
best_loss = val_loss
torch.save(model.state_dict(), osp.join(args.work_dir, 'best.pt'))
if epoch % args.save_freq == 0:
torch.save(model.state_dict(), osp.join(args.work_dir, f'epoch{epoch}.pt'))
print(f'Train Loss : [{np.mean(train_loss):.4f}] Train Acc : [{train_acc:.4f}] Train f1 : [{train_f1:.4f}] Train PR : [{train_pr:.4f}] Train RC : [{train_rc:.4f}] Train ROC-AUC : [{train_roc_auc:.4f}]')
if not only_train:
print(f'Val Loss : [{val_loss:.4f}] Val Acc : [{val_acc:.4f}] Val f1 : [{val_f1:.4f}] Val PR : [{val_pr:.4f}] Val RC : [{val_rc:.4f}] Val ROC-AUC : [{val_roc_auc:.4f}]')
wandb.log({
'valid/loss': round(val_loss,4), 'valid/acc': round(val_acc,4),
'valid/f1': round(val_f1,4), 'valid/pr': round(val_pr,4), 'valid/rc': round(val_rc,4), 'valid/roc_auc_score': round(val_roc_auc,4),
}, commit=False)
wandb.log({'train/loss': round(np.mean(train_loss),4), 'train/acc': round(train_acc,4), 'train/f1': round(train_f1,4), 'train/pr': round(train_pr,4), 'train/rc': round(train_rc,4), 'train/roc_auc_score': round(train_roc_auc,4)})
def validation(model, criterion, crit_aux, val_loader, args):
model.eval()
pred_labels_proba = []
true_labels = []
val_loss = []
with torch.no_grad():
for img, tab, label in tqdm(iter(val_loader)):
true_labels += label.tolist()
img = img.float().to(args.device)
tab = tab.float().to(args.device)
label = label.float().to(args.device)
if args.cls_return == 'baseline':
model_pred = model(img, tab)
elif args.cls_return == 'aux':
model_pred, img_pred, tab_pred = model(img, tab)
loss = 0
for i in range(len(criterion)):
loss += args.crit_coef[i] * criterion[i](model_pred, label.reshape(-1,1))
if len(crit_aux):
loss += args.crit_aux_coef[0] * crit_aux[0](img_pred, label.reshape(-1,1))
loss += args.crit_aux_coef[1] * crit_aux[1](tab_pred, label.reshape(-1,1))
val_loss.append(loss.item())
if not args.cls_last_sigmoid:
model_pred = torch.sigmoid(model_pred)
model_pred = model_pred.squeeze(1).to('cpu')
pred_labels_proba += model_pred.tolist()
pred_labels = np.where(np.array(pred_labels_proba) > args.pred_thres, 1, 0)
val_acc = metrics.accuracy_score(y_true=true_labels, y_pred=pred_labels)
val_f1 = metrics.f1_score(y_true=true_labels, y_pred=pred_labels, average='macro', zero_division=1)
val_pr = metrics.precision_score(y_true=true_labels, y_pred=pred_labels, average='macro', zero_division=1)
val_rc = metrics.recall_score(y_true=true_labels, y_pred=pred_labels, average='macro', zero_division=1)
val_roc_auc = metrics.roc_auc_score(y_true=true_labels, y_score=pred_labels_proba, average='macro')
return np.mean(val_loss), val_acc, val_f1, val_pr, val_rc, val_roc_auc
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--save_freq', type=int, default=5)
parser.add_argument('--save_metric', type=str, default='f1')
parser.add_argument('--work_dir', type=str, default='./work_dirs')
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--fold', type=int, nargs='+', default=[1,2,3,4,5]) # 0 : all_train
parser.add_argument('--amp', type=str2bool, default=True)
parser.add_argument('--pretrained', type=str2bool, default=True)
parser.add_argument('--pred_thres', type=float, default=0.5)
# Data
parser.add_argument('--df', type=str, default='train_heuristic_5fold') # train_5fold / train_heuristic_5fold
parser.add_argument('--df_ver', type=int, default=7)
parser.add_argument('--img_size', type=int, default=512)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--norm_type', type=str, default='baseline') # baseline / custom
# Model
parser.add_argument('--img_model', type=str, default="efficientnet_b0")
parser.add_argument('--img_back_freeze', type=int, default=0)
parser.add_argument('--img_last_feat', type=int, default=1)
parser.add_argument('--tab_model', type=str, default="drop20")
parser.add_argument('--tab_init_feat', type=int, default=19)
parser.add_argument('--tab_last_feat', type=int, default=1)
parser.add_argument('--cls_model', type=str, default="baseline")
parser.add_argument('--cls_fusion', type=str, default="cat")
parser.add_argument('--cls_return', type=str, default="baseline") # baseline / aux
parser.add_argument('--cls_last_sigmoid', type=str2bool, default=True)
# Criterion
parser.add_argument('--crit', type=str, nargs='+', default=["bcelogit"]) # for cls
parser.add_argument('--crit_coef', type=float, nargs='+', default=[1.0]) # for cls
parser.add_argument('--crit_aux', type=str, nargs='+', default=[]) # for img, tab
parser.add_argument('--crit_aux_coef', type=float, nargs='+', default=[1.0, 1.0]) # for img, tab
# Optimizer
parser.add_argument('--optim', type=str, default="adamw")
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--lr_min', type=float, default=1e-7)
parser.add_argument('--weight_decay', type=float, default=1e-6)
parser.add_argument('--opt_param', type=str, default="baseline") # baseline / custom
parser.add_argument('--opt_coef', type=float, nargs='+', default=[1.0, 1.0, 1.0]) # img tab cls
# Scheduler
parser.add_argument('--sched', type=str, default="cosine_warmup")
parser.add_argument('--warmup_steps', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.5)
parser.add_argument('--patience', type=int, default=1)
args = parser.parse_args()
args.base_dir = './'
args.data_dir = osp.join(args.base_dir, 'data')
return args
def main(args):
args.device = torch.device("cuda:0")
df = pd.read_csv(osp.join(args.data_dir, f'{args.df}.csv'))
df = preprocess_df(df, args.df_ver, drop_row=True)
if args.fold == 0:
train_df = df.drop(columns=['kfold']).reset_index(drop=True)
valid_loader = None
else:
train_df = df[df["kfold"] != args.fold].drop(columns=['kfold']).reset_index(drop=True)
valid_df = df[df["kfold"] == args.fold].drop(columns=['kfold']).reset_index(drop=True)
valid_loader = create_data_loader(
valid_df, 'valid', args.img_size, args.batch_size, args.num_workers, args.data_dir, norm_type=args.norm_type,
)
train_loader = create_data_loader(
train_df, 'train', args.img_size, args.batch_size, args.num_workers, args.data_dir, norm_type=args.norm_type
)
model = ClassificationModel(args).to(args.device)
criterion = []
for crit in args.crit:
if crit == 'bcelogit':
criterion.append(nn.BCEWithLogitsLoss().to(args.device))
elif crit == 'bce':
criterion.append(nn.BCELoss().to(args.device))
elif crit == 'l1':
criterion.append(nn.L1Loss().to(args.device))
assert len(criterion) == len(args.crit_coef)
crit_aux = []
for crit in args.crit_aux:
if crit == 'bcelogit':
crit_aux.append(nn.BCEWithLogitsLoss().to(args.device))
elif crit == 'bce':
crit_aux.append(nn.BCELoss().to(args.device))
elif crit == 'l1':
crit_aux.append(nn.L1Loss().to(args.device))
if args.opt_param == 'baseline':
params = model.parameters()
# not working
elif args.opt_param == 'custom':
params = [
{"params": model.img_feature_extractor.parameters(), "lr": args.lr*args.opt_coef[0]},
{"params": model.tab_feature_extractor.parameters(), "lr": args.lr*args.opt_coef[1]},
{"params": model.classifier.parameters(), "lr": args.lr*args.opt_coef[2]},
]
if args.optim == 'adamw':
optimizer = torch.optim.AdamW(params, lr=args.lr, weight_decay=args.weight_decay)
elif args.optim == 'adamp':
optimizer = AdamP(params, lr=args.lr, weight_decay=args.weight_decay)
if args.sched == 'reduce':
factor = args.gamma
patience = args.patience
min_lr = args.lr_min
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='max', factor=factor, patience=patience, threshold_mode='abs', min_lr=min_lr, verbose=True)
elif args.sched == 'cosine':
T_0 = args.epochs
eta_min = args.lr_min
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer, T_0=T_0, T_mult=1, eta_min=eta_min, verbose=True)
elif args.sched == 'cosine_warmup':
first_cycle_steps = args.epochs
max_lr = args.lr
min_lr = args.lr_min
warmup_steps = args.warmup_steps
gamma = args.gamma
scheduler = CosineAnnealingWarmupRestarts(
optimizer, first_cycle_steps=first_cycle_steps, cycle_mult=1.0,
max_lr=max_lr, min_lr=min_lr, warmup_steps=warmup_steps, gamma=gamma)
run_train(model, train_loader, valid_loader, criterion, crit_aux, optimizer, scheduler, args)
if __name__ == '__main__':
args = get_parser()
fold_list = args.fold
for fold in fold_list:
args = get_parser()
args.fold = fold
args.work_dir = get_exp_dir(args.work_dir)
args.config_dir = osp.join(args.work_dir, 'config.yaml')
save_config(args, args.config_dir)
set_seeds(args.seed)
wandb_init(args)
main(args)