-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathMyTrain.py
117 lines (102 loc) · 5.04 KB
/
MyTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
from torch.autograd import Variable
import os
import argparse
from datetime import datetime
from lib.PraNet_Res2Net import PraNet
from utils.dataloader import get_loader
from utils.utils import clip_gradient, adjust_lr, AvgMeter
import torch.nn.functional as F
def structure_loss(pred, mask):
weit = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none')
wbce = (weit*wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask)*weit).sum(dim=(2, 3))
union = ((pred + mask)*weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1)/(union - inter+1)
return (wbce + wiou).mean()
def train(train_loader, model, optimizer, epoch):
model.train()
# ---- multi-scale training ----
size_rates = [0.75, 1, 1.25]
loss_record2, loss_record3, loss_record4, loss_record5 = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter()
for i, pack in enumerate(train_loader, start=1):
for rate in size_rates:
optimizer.zero_grad()
# ---- data prepare ----
images, gts = pack
images = Variable(images).cuda()
gts = Variable(gts).cuda()
# ---- rescale ----
trainsize = int(round(opt.trainsize*rate/32)*32)
if rate != 1:
images = F.upsample(images, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
gts = F.upsample(gts, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
# ---- forward ----
lateral_map_5, lateral_map_4, lateral_map_3, lateral_map_2 = model(images)
# ---- loss function ----
loss5 = structure_loss(lateral_map_5, gts)
loss4 = structure_loss(lateral_map_4, gts)
loss3 = structure_loss(lateral_map_3, gts)
loss2 = structure_loss(lateral_map_2, gts)
loss = loss2 + loss3 + loss4 + loss5 # TODO: try different weights for loss
# ---- backward ----
loss.backward()
clip_gradient(optimizer, opt.clip)
optimizer.step()
# ---- recording loss ----
if rate == 1:
loss_record2.update(loss2.data, opt.batchsize)
loss_record3.update(loss3.data, opt.batchsize)
loss_record4.update(loss4.data, opt.batchsize)
loss_record5.update(loss5.data, opt.batchsize)
# ---- train visualization ----
if i % 20 == 0 or i == total_step:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], '
'[lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}, lateral-5: {:0.4f}]'.
format(datetime.now(), epoch, opt.epoch, i, total_step,
loss_record2.show(), loss_record3.show(), loss_record4.show(), loss_record5.show()))
save_path = 'snapshots/{}/'.format(opt.train_save)
os.makedirs(save_path, exist_ok=True)
if (epoch+1) % 10 == 0:
torch.save(model.state_dict(), save_path + 'PraNet-%d.pth' % epoch)
print('[Saving Snapshot:]', save_path + 'PraNet-%d.pth'% epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int,
default=20, help='epoch number')
parser.add_argument('--lr', type=float,
default=1e-4, help='learning rate')
parser.add_argument('--batchsize', type=int,
default=16, help='training batch size')
parser.add_argument('--trainsize', type=int,
default=352, help='training dataset size')
parser.add_argument('--clip', type=float,
default=0.5, help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float,
default=0.1, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int,
default=50, help='every n epochs decay learning rate')
parser.add_argument('--train_path', type=str,
default='./data/TrainDataset', help='path to train dataset')
parser.add_argument('--train_save', type=str,
default='PraNet_Res2Net')
opt = parser.parse_args()
# ---- build models ----
# torch.cuda.set_device(0) # set your gpu device
model = PraNet().cuda()
# ---- flops and params ----
# from utils.utils import CalParams
# x = torch.randn(1, 3, 352, 352).cuda()
# CalParams(lib, x)
params = model.parameters()
optimizer = torch.optim.Adam(params, opt.lr)
image_root = '{}/images/'.format(opt.train_path)
gt_root = '{}/masks/'.format(opt.train_path)
train_loader = get_loader(image_root, gt_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
total_step = len(train_loader)
print("#"*20, "Start Training", "#"*20)
for epoch in range(1, opt.epoch):
adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
train(train_loader, model, optimizer, epoch)