-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
206 lines (169 loc) · 6.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import print_function
import tensorflow as tf
import numpy as np
from PIL import Image
import json
# Parameters
learning_rate = 0.001
training_iters = 3000
batch_size = 20
display_step = 1
# Network Parameters
n_input = 128*128 # Cropped Image data input (img shape: 128*128 )
n_classes = 10 # Total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, 128, 128, 3])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
#Cropped Images Directory
CROPPED_IMG_DIC = './cropped_img/'
# Store layers weight & bias
weights = {
# 5x5 conv, 3 input, 16 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 3, 16])),
# 5x5 conv, 16 inputs, 32 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 16, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc3': tf.Variable(tf.random_normal([5, 5, 32 ,64])),
# fully connected, 32*32*96 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([16*16*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([16])),
'bc2': tf.Variable(tf.random_normal([32])),
'bc3': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
def conv_net(x, weights, biases, dropout):
#Reshape input picture
x = tf.reshape(x, shape=[-1, 128, 128, 3])
#Conv Layer and ReLU #1
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
print(conv1.shape)
#Max Pool #1
mp1 = maxpool2d(conv1, k = 2)
#Conv Layer and ReLU #2
conv2 = conv2d(mp1, weights['wc2'], biases['bc2'])
print(conv2.shape)
#Max Pool #2
mp2 = maxpool2d(conv2, k = 2)
#Conv Layer and ReLU #3
conv3 = conv2d(mp2, weights['wc3'], biases['bc3'])
print(conv3.shape)
#Max Pool #3
mp3 = maxpool2d(conv3, k = 2)
#Fully Connected Neural Network #1
fc1 = tf.reshape(mp3, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
#Dropout Layer
fc1 = tf.nn.dropout(fc1, dropout)
#Fully Connected Neural Network #2 Output Layer
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
saver=tf.train.Saver()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
#read tags from json file
tags = {}
with open('tags.json', 'r') as json_file:
json_str = json_file.read()
tags = json.loads(json_str)
tagged_imgs = []
for fname in tags:
t = (fname, tags[fname])
tagged_imgs.append(t)
for i in range(0,10):
num_batch = len(tagged_imgs) // batch_size
print(num_batch)
for batch_id in range(0, num_batch):
start_index = batch_id * batch_size
end_index = (batch_id + 1) * batch_size
batch = tagged_imgs[start_index: end_index]
#build batch
batch_xs = []
batch_ys = []
for fname, tags in batch:
img = Image.open(CROPPED_IMG_DIC + fname)
img_ndarray = np.asarray(img, dtype='float32')
img_ndarray = np.reshape(img_ndarray, [128, 128, 3])
batch_xs.append(img_ndarray)
#Set tags
batch_y = np.zeros(n_classes)
batch_y[tags - 1] = 1
batch_y = np.reshape(batch_y, [n_classes, ])
batch_ys.append(batch_y)
batch_xs = np.asarray(batch_xs)
batch_ys = np.asarray(batch_ys)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_xs,
y: batch_ys,
keep_prob: 1.})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
#Split to batches
num_batch = len(tagged_imgs) // batch_size
print(num_batch)
for batch_id in range(0, num_batch):
start_index = batch_id * batch_size
end_index = (batch_id + 1) * batch_size
batch = tagged_imgs[start_index: end_index]
#build batch
batch_xs = []
batch_ys = []
for fname, tags in batch:
img = Image.open(CROPPED_IMG_DIC + fname)
img_ndarray = np.asarray(img, dtype='float32')
img_ndarray = np.reshape(img_ndarray, [128, 128, 3])
batch_xs.append(img_ndarray)
#Set tags
batch_y = np.zeros(n_classes)
batch_y[tags - 1] = 1
batch_y = np.reshape(batch_y, [n_classes, ])
batch_ys.append(batch_y)
batch_xs = np.asarray(batch_xs)
batch_ys = np.asarray(batch_ys)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_xs,
y: batch_ys,
keep_prob: 1.})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
saver.save(sess,"./model.ckpt")