-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_avec_hgt.py
217 lines (183 loc) · 9.26 KB
/
train_avec_hgt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time
import ipdb
import argparse
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from sklearn.metrics import mean_absolute_error
from scipy.stats import pearsonr
from logger import log
from model2 import DialogueHGTModel
from dataloader import AVECDataset
from utils import seed_everything
# TODO: If we add word-level graph, we need to add `masks`.
def get_train_valid_sampler(trainset, valid=0.1):
size = len(trainset)
idx = list(range(size))
split = int(valid * size)
return SubsetRandomSampler(idx[split:]), SubsetRandomSampler(idx[:split]) # 随机采样
def get_AVEC_loaders(path, batch_size=32, valid=0.1, num_workers=0, pin_memory=False):
trainset = AVECDataset(path=path, train=True)
train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid)
train_loader = DataLoader(trainset,
batch_size=batch_size,
sampler=train_sampler,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
valid_loader = DataLoader(trainset,
batch_size=batch_size,
sampler=valid_sampler,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
testset = AVECDataset(path=path, train=False)
test_loader = DataLoader(testset,
batch_size=batch_size,
collate_fn=testset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
return train_loader, valid_loader, test_loader
def train_or_eval_graph_model(model, loss_func, dataloader, cuda, optimizer=None, train=False):
losses, preds, labels = [], [], []
assert not train or optimizer != None
if train:
model.train()
else:
model.eval()
seed_everything(args.seed)
for data in dataloader:
if train:
optimizer.zero_grad()
textf, visualf, audiof, qmask, umask, label = [d.cuda() for d in data] if cuda else data
lengths = [(umask[j] == 1).nonzero().tolist()[-1][0] + 1 for j in
range(len(umask))] # 每个 batch 中真实的 utterance 数量
# TODO: 如果增加词级别 level,可以增加一个新的 lengths,表示添加词的 features 之后lengths的长度
# 只用到了 text feature, need to change.
# ipdb.set_trace()
pred = model(textf, qmask, umask, lengths) # True number of utterances
pred = pred.squeeze()
labels_ = torch.cat([label[j][:lengths[j]] for j in range(len(label))])
loss = loss_func(pred, labels_)
preds.append(pred.data.cpu().numpy())
labels.append(labels_.data.cpu().numpy())
losses.append(loss.item())
if train:
loss.backward()
optimizer.step()
# ipdb.set_trace()
if preds != []:
preds = np.concatenate(preds)
labels = np.concatenate(labels)
else:
return float('nan'), float('nan'), float('nan'), [], []
avg_loss = round(np.sum(losses) / len(losses), 4)
mae = round(mean_absolute_error(labels, preds), 4)
pred_lab = pd.DataFrame(list(zip(labels, preds)))
pear = round(pearsonr(pred_lab[0], pred_lab[1])[0], 4)
return avg_loss, mae, pear, labels, preds
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=100, help='random seed')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='does not use GPU')
parser.add_argument('--base-model', default='LSTM',
help='base recurrent model, must be one of DialogRNN/LSTM/GRU')
parser.add_argument('--nodal-attention', action='store_true', default=False,
help='whether to use nodal attention in graph model: Equation 4,5,6 in Paper') # Emotion classifier
parser.add_argument('--windowp', type=int, default=10,
help='context window size for constructing edges in graph model for past utterances')
# 实验点:可用于探究过去的影响大还是未来的影响大
parser.add_argument('--windowf', type=int, default=10,
help='context window size for constructing edges in graph model for future utterances')
parser.add_argument('--lr', type=float, default=0.0001,
help='learning rate')
parser.add_argument('--l2', type=float, default=0.00001,
help='L2 regularization weight')
parser.add_argument('--rec-dropout', type=float, default=0.1,
help='rec_dropout rate')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate')
parser.add_argument('--batch-size', type=int, default=32,
help='batch size')
parser.add_argument('--epochs', type=int, default=60,
help='number of epochs')
parser.add_argument('--class-weight', action='store_true', default=False,
help='use class weights')
parser.add_argument('--active-listener', action='store_true', default=False,
help='activate listener')
parser.add_argument('--attention', default='general',
help='Attention type in DialogueRNN model')
parser.add_argument('--num_layers', type=int, default=2, help='number of gnn layers')
parser.add_argument('--num_heads', type=int, default=4, help='number of heads in DialogueHGT')
parser.add_argument('--tensorboard', action='store_true', default=False,
help='Enables tensorboard log')
parser.add_argument('--attribute', type=int, default=1, help='AVEC attribute for regression')
parser.add_argument('--mode', type=int, default=0, help='different mode of feature')
args = parser.parse_args()
log.info(args)
args.cuda = torch.cuda.is_available() and not args.no_cuda
if args.cuda:
log.info("Running on GPU")
else:
log.info("Running on CPU")
# I can use VisualDL instead.
if args.tensorboard:
from tensorboardX import SummaryWriter
writer = SummaryWriter()
# 针对 AVEC 数据集特定部分
n_classes = 1 # 回归问题
cuda = args.cuda
n_epochs = args.epochs
batch_size = args.batch_size
D_m = 100 # utterance feature size
D_g = 128
D_p = 100
D_e = 128
D_a = 100
graph_h = 128
seed_everything(args.seed)
model = DialogueHGTModel(args,
D_m, D_g, D_p, D_e, D_a, graph_h,
n_speakers=2,
n_classes=n_classes,
avec=True)
log.info("Graph NN with %s as base model" % args.base_model)
name = 'Graph'
if cuda:
model.cuda()
total_params = sum(p.numel() for p in model.parameters())
log.info('Total parameters: %d' % total_params)
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
log.info('Training parameters: %d' % total_trainable_params)
# 不需要 class weights, 因为这是回归任务
loss_function = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2)
train_loader, valid_loader, test_loader = \
get_AVEC_loaders('./dataset/AVEC_features/AVEC_features_{}.pkl'.format(args.attribute),
valid=0.0,
batch_size=batch_size,
num_workers=2)
best_loss, best_label, best_pred, best_pear = None, None, None, None
for e in range(n_epochs):
start_time = time.time()
train_loss, train_mae, train_pear, _, _ = train_or_eval_graph_model(model, loss_function, train_loader, cuda,
optimizer, True)
valid_loss, valid_mae, valid_pear, _, _ = train_or_eval_graph_model(model, loss_function, valid_loader, cuda)
test_loss, test_mae, test_pear, test_label, test_pred = train_or_eval_graph_model(model, loss_function,
test_loader, cuda)
if best_loss == None or best_loss > test_loss:
best_loss, best_label, best_pred, best_pear = \
test_loss, test_label, test_pred, test_pear
log.info('epoch: {}, train_loss: {}, train_mae: {}, train_pear: {}, valid_loss: {}, valid mae: {}, '
'valid_pear: {}, test_loss: {}, test_mae: {}, test_pear: {}, time: {}'.
format(e, train_loss, train_mae, train_pear, valid_loss, valid_mae,
valid_pear, test_loss, test_mae, test_pear, round(time.time() - start_time, 2)))
log.info('Test performance...')
log.info('MSE: {}, MAE: {}, r: {}'.format(best_loss,
round(mean_absolute_error(best_label, best_pred), 4),
best_pear))