-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinterpolate_double.py
32 lines (26 loc) · 1.41 KB
/
interpolate_double.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
def interpolate_double(
original_signal_path: str,
interpolated_signal_path: str,
) -> None:
if not os.path.exists(interpolated_signal_path):
os.makedirs(interpolated_signal_path, exist_ok=True)
original_signal_files = os.listdir(original_signal_path)
for signal_file in tqdm(original_signal_files):
original_signal = pd.read_csv(f"{original_signal_path}/{signal_file}")
original_num_samples = len(original_signal)
interpolated_num_samples = original_num_samples * 2
original_signal.index = np.arange(0, 2 * original_num_samples, step=2)
interpolated_signal = original_signal.reindex(range(interpolated_num_samples)).interpolate(method="linear")
interpolated_signal.to_csv(f"{interpolated_signal_path}/{signal_file}", index=False)
if __name__ == "__main__":
ORIGINAL_SIGNAL_PATHS = ["./dataset/sl_rppg/signals", "./dataset/sl_rppg_60/signals", "./dataset/sl_rppg_120/signals", "./dataset/sl_rppg_240/signals"]
INTERPOLATED_SIGNAL_PATHS = ["./dataset/sl_rppg_60/signals", "./dataset/sl_rppg_120/signals", "./dataset/sl_rppg_240/signals", "./dataset/sl_rppg_480/signals"]
for i in range(len(ORIGINAL_SIGNAL_PATHS)):
interpolate_double(
original_signal_path=ORIGINAL_SIGNAL_PATHS[i],
interpolated_signal_path=INTERPOLATED_SIGNAL_PATHS[i],
)