- Create a conda environment:
conda create -n escooters python=3.12 -y
- Active the virtual environment:
conda activate escooters
- Install requirements:
pip install -r requirements.txt
- Download the data (https://zenodo.org/records/10578641).
- Run the script to convert the labeled data into YOLO format:
python yolov5/commons/labelme2yolo.py
- Download the pre-trained models from the official YOLO websites and unzip them to the corresponding folders. For example, you need to put the
yolov3.pt
,yolov3-spp.pt
andyolov3-tiny.pt
under the YOLOV3/ folder. - You can run the 0st data folder, we can run:
bash -i train.sh
. - To test the models, we can run:
bash -i test.sh
.
The YOLO algorithms[1-6] used for our experiments are not maintained by us, please give credit to the authors of the YOLO algorithms[1-6].
The video demos can be accessed at [Demo]
If you find the models and or the dataset useful, consider citing the following article:
Coming soon
- [1-1] YOLOv3: Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).
- [1-2] YOLOv3 Implementation: https://github.com/ultralytics/yolov3.
- [2-1] YOLOv4: Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934 (2020).
- [2-2] YOLOv4 Implementation: https://github.com/WongKinYiu/PyTorch_YOLOv4.
- [3-1] YOLOv5: None
- [3-2] YOLOv5 Implementation: https://github.com/ultralytics/yolov5.
- [4-1] YOLOv6: Li, Chuyi, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke et al. "YOLOv6: A single-stage object detection framework for industrial applications." arXiv preprint arXiv:2209.02976 (2022).
- [4-2] YOLOv6 Implementation: https://github.com/meituan/YOLOv6.
- [5-1] YOLOv7: Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464-7475. 2023.
- [5-2] YOLOv7 Implementation: https://github.com/WongKinYiu/yolov7
- [6-1] YOLOv8 Implementation: https://github.com/ultralytics/ultralytics