-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
78 lines (57 loc) · 2.35 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import pandas as pd
import os.path as osp
from tqdm.auto import tqdm
import torch
from torch.utils.data import DataLoader
from transformers.trainer_utils import seed_worker
from transformers import BlipConfig, BlipProcessor, BlipImageProcessor, BertTokenizerFast, BlipForQuestionAnswering
from dataset import VQADataset
import utils
import warnings
warnings.filterwarnings("ignore")
@torch.no_grad()
def inference(model, loader, processor, device):
model.eval()
preds = []
for inputs in tqdm(loader, total=len(loader)):
for k in inputs.keys():
inputs[k] = inputs[k].to(device)
outputs = model.generate(**inputs)
pred = processor.tokenizer.batch_decode(outputs, skip_special_tokens=True)
preds.extend(pred)
return preds
def main(args):
utils.set_seeds(args.seed)
args.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
# Data
test_df = pd.read_csv('data/test.csv')
# Model
image_processor = BlipImageProcessor()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
processor = BlipProcessor(image_processor=image_processor, tokenizer=tokenizer)
model_config = BlipConfig()
model = BlipForQuestionAnswering(model_config).to(args.device)
# Load weight
trained_weight_path = osp.join('work_dirs', args.weight)
trained_weight = torch.load(trained_weight_path, map_location='cpu')
model.load_state_dict(trained_weight)
# Dataset & Dataloader
loader_dict = {"pin_memory": True, "num_workers": 4, "worker_init_fn": seed_worker}
test_dataset = VQADataset(test_df, processor, mode='test')
test_loader = DataLoader(test_dataset, **loader_dict)
# inference
preds = inference(model, test_loader, processor, args.device)
# submission
submission = pd.read_csv('data/sample_submission.csv')
submission['answer'] = preds
file_path = osp.join('submission', f"{args.weight.replace('/', '_').replace('pt','csv')}")
if osp.exists(file_path):
file_path = osp.splitext(file_path)[0] + '_dup.csv'
submission.to_csv(file_path, index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--weight', type=str)
args = parser.parse_args()
main(args)