-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
237 lines (192 loc) · 7.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import time
import wandb
import argparse
import pandas as pd
import os.path as osp
from tqdm.auto import tqdm
import torch
import torch.nn as nn
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import DataLoader
from transformers.optimization import get_cosine_schedule_with_warmup
from transformers.trainer_utils import seed_worker
from transformers import BlipConfig, BlipProcessor, BlipImageProcessor, BertTokenizerFast, BlipForQuestionAnswering
from dataset import VQADataset
import utils
try:
import wandb_utils
except:
wandb_utils = None
import warnings
warnings.filterwarnings("ignore")
def get_parser():
parser = argparse.ArgumentParser()
# Environment
parser.add_argument('--work_dir', type=str, default='./work_dirs')
parser.add_argument('--save_freq', type=int, default=1)
parser.add_argument('--seed', type=int, default=42)
# Log
parser.add_argument('--use_wandb', type=utils.str2bool, default=False)
# Data
parser.add_argument('--df_ver', type=int, default=1)
parser.add_argument('--fold', type=int, default=-1)
# Train
parser.add_argument('--num_epochs', type=int, default=3)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--lr', type=float, default=4e-5)
parser.add_argument('--weight_decay', type=float, default=1e-2)
parser.add_argument('--warmup_ratio', type=float, default=0.05)
parser.add_argument('--grad_accum', type=int, default=4)
# Model
parser.add_argument('--pretrained_ckpt', type=str, default='model_base.pth', choices=['model_base.pth', 'model_base_capfilt_large.pth'])
parser.add_argument('--freeze_image_encoder', type=utils.str2bool, default=True)
args = parser.parse_args()
return args
def train(epoch, model, loader, optimizer, scheduler, scaler, args, log_freq=1000):
start = end = time.time()
batch_time = utils.AverageMeter()
data_time = utils.AverageMeter()
losses = utils.AverageMeter()
model.train()
optimizer.zero_grad()
if args.freeze_image_encoder:
for name, param in model.vision_model.named_parameters():
param.requires_grad = False
len_loader = len(loader)
for i, inputs in enumerate(loader):
data_time.update(time.time() - end)
with autocast():
for k in inputs.keys():
inputs[k] = inputs[k].to(args.device)
outputs = model(**inputs)
loss = outputs.loss / args.grad_accum
losses.update(loss.item())
scaler.scale(loss).backward()
if (i+1) % args.grad_accum == 0 or (i+1) == len_loader:
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0 * args.grad_accum)
scaler.step(optimizer)
scaler.update()
scheduler.step()
optimizer.zero_grad()
batch_time.update(time.time() - end)
end = time.time()
if (i+1) % log_freq == 0 or (i+1) == len_loader:
print(
'Epoch {0} [{1}/{2}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Elapsed {remain:s} '
'Loss: {loss_val:.3f}({loss_avg:.3f}) '
.format(
epoch, i+1, len_loader,
data_time=data_time,
remain=utils.timeSince(start, float(i+1)/len_loader),
loss_val=losses.val * args.grad_accum,
loss_avg=losses.avg * args.grad_accum,
)
)
if args.use_wandb:
wandb.log({
'train_loss': round(losses.val * args.grad_accum, 4),
'learning_rate': scheduler.optimizer.param_groups[0]['lr'],
})
return round(losses.avg * args.grad_accum, 4)
@torch.no_grad()
def evaluation(model, loader, processor, args, device):
total_bs = 0
total_correct = 0
total_correct_new = 0
model.eval()
pbar = tqdm(loader, total=len(loader))
for inputs in pbar:
for k in inputs.keys():
inputs[k] = inputs[k].to(device)
outputs = model.generate(**inputs)
pred = processor.tokenizer.batch_decode(outputs, skip_special_tokens=True)
gt = processor.tokenizer.batch_decode(inputs['labels'], skip_special_tokens=True)
bs = inputs['labels'].size(0)
total_bs += bs
total_correct += sum([g==p for g,p in zip(gt, pred)])
pbar.set_postfix(
acc=total_correct/total_bs,
acc_new=total_correct_new/total_bs,
)
acc = round(total_correct/total_bs, 4)
if args.use_wandb:
wandb.log({'valid_accuracy': acc})
return acc
def main(args):
args.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
# DataFrame
df = pd.read_csv(f'data/train_5fold_ver{args.df_ver}.csv')
if args.fold == -1:
train_df = df
else:
train_df = df[df["kfold"] != args.fold].reset_index(drop=True)
valid_df = df[df["kfold"] == args.fold].reset_index(drop=True)
# Model
image_processor = BlipImageProcessor()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
processor = BlipProcessor(image_processor=image_processor, tokenizer=tokenizer)
model_config = BlipConfig()
model = BlipForQuestionAnswering(model_config).to(args.device)
# pretrained weight from (129M & BLIP w/ ViT-B)
# https://github.com/salesforce/BLIP#pre-trained-checkpoints
state_dict = torch.load(args.pretrained_ckpt)['model']
for key in state_dict.copy():
value = state_dict.pop(key)
if key == 'visual_encoder.pos_embed':
value = utils.interpolate_pos_embed(value, model.vision_model)
renamed_key = utils.rename_key(key)
state_dict[renamed_key] = value
model.load_state_dict(state_dict, strict=False)
model.gradient_checkpointing_enable()
# Dataset & Dataloader
loader_dict = {"pin_memory": True, "num_workers": 4, "worker_init_fn": seed_worker}
train_set = VQADataset(train_df, processor, mode='train')
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
**loader_dict
)
if args.fold != -1:
if args.freeze_image_encoder:
valid_batch_size = 32
else:
valid_batch_size = 16
valid_set = VQADataset(valid_df, processor, mode='valid')
valid_loader = DataLoader(valid_set, batch_size=valid_batch_size, **loader_dict)
# Optimizer & Scheduler & GradScaler
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
total_steps = len(train_loader) * args.num_epochs / args.grad_accum
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=int(total_steps * args.warmup_ratio),
num_training_steps=total_steps,
)
scaler = GradScaler()
# Training loop
valid_acc = 0
for epoch in range(1, args.num_epochs + 1):
print('-' * 10)
print(f'Epoch {epoch} / {args.num_epochs}')
train_loss = train(epoch, model, train_loader, optimizer, scheduler, scaler, args)
if args.fold != -1:
valid_acc = evaluation(model, valid_loader, processor, args, args.device)
if epoch % args.save_freq == 0:
file_name = f'epoch{epoch}_acc{valid_acc}.pt'
torch.save(model.state_dict(), osp.join(args.work_dir_exp, file_name))
print(f'[Epoch {epoch}] [Train] Loss:{train_loss}')
if args.fold != -1:
print(f'[Epoch {epoch}] [Valid] Acc:{valid_acc}')
if __name__ == "__main__":
args = get_parser()
args.work_dir_exp = utils.get_exp_dir(args.work_dir)
args.config_dir = osp.join(args.work_dir_exp, 'config.yaml')
utils.save_config(args, args.config_dir)
utils.set_seeds(args.seed)
if args.use_wandb:
wandb_utils.wandb_init(args)
main(args)