-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
143 lines (116 loc) · 4.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import os.path as osp
import re
import time
import math
import yaml
import torch
import random
import argparse
import numpy as np
def set_seeds(random_seed):
random.seed(random_seed)
np.random.seed(random_seed)
np.random.default_rng(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_exp_dir(work_dir):
work_dir = work_dir.split('./')[-1]
if not osp.exists(osp.join(os.getcwd(), work_dir)):
exp_dir = osp.join(os.getcwd(), work_dir, 'exp0')
else:
idx = 1
exp_dir = osp.join(os.getcwd(), work_dir, f'exp{idx}')
while osp.exists(exp_dir):
idx += 1
exp_dir = osp.join(os.getcwd(), work_dir, f'exp{idx}')
os.makedirs(exp_dir)
return exp_dir
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def save_config(args, save_dir):
with open(save_dir, 'w') as f:
yaml.safe_dump(args.__dict__, f)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (remain %s)' % (asMinutes(s), asMinutes(rs))
# Copied from
# https://github.com/huggingface/transformers/blob/a865b62e07c88f4139379fea99bace5ac3f400d2/src/transformers/models/blip/convert_blip_original_pytorch_to_hf.py#L54C1-L78C15
def rename_key(key):
if "visual_encoder" in key:
key = re.sub("visual_encoder*", "vision_model.encoder", key)
if "blocks" in key:
key = re.sub(r"blocks", "layers", key)
if "attn" in key:
key = re.sub(r"attn", "self_attn", key)
if "norm1" in key:
key = re.sub(r"norm1", "layer_norm1", key)
if "norm2" in key:
key = re.sub(r"norm2", "layer_norm2", key)
if "encoder.norm" in key:
key = re.sub(r"encoder.norm", "post_layernorm", key)
if "encoder.patch_embed.proj" in key:
key = re.sub(r"encoder.patch_embed.proj", "embeddings.patch_embedding", key)
if "encoder.pos_embed" in key:
key = re.sub(r"encoder.pos_embed", "embeddings.position_embedding", key)
if "encoder.cls_token" in key:
key = re.sub(r"encoder.cls_token", "embeddings.class_embedding", key)
if "self_attn" in key:
key = re.sub(r"self_attn.proj", "self_attn.projection", key)
return key
# Modified from
# https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/vit.py#L281C1-L305C36
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
# interpolate position embedding
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = visual_encoder.embeddings.num_patches
num_extra_tokens = visual_encoder.embeddings.num_positions - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
if orig_size!=new_size:
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
return new_pos_embed
else:
return pos_embed_checkpoint