forked from emchristensen/weather_analysis
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweather_monthly_summary.R
54 lines (43 loc) · 2 KB
/
weather_monthly_summary.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# This script takes daily weather data summarized from original files and writes a new file of monthly
# total and mean precip, and max and min temp.
# Written by EMC 8/7/14
#
# Input:
# Daily_weather_1980_present_fixed_withgaps.csv
# Year, Month, Day, Precipitation, TempAirMax,TempAirMin
#
# Output:
# Monthly_ppt_1980_present.csv
# year, month, sumprecip, maxtemp, mintemp
#
# Scripts called:
# find_gaps_weather_data.r creates input file Hourly_PPT_mm_1989_present_fixed_withgaps.csv
# weather_daily_summary.r combines hourly dataset (1989-present) and daily dataset (1980-89)
# set working directory and run prelim scripts
setwd('C:/Users/EC/git_dir/')
source('portal_weather/weather_daily_summary.r')
#####################################################################################################
# Define functions
#####################################################################################################
monthly_summary_from_daily = function(dataframe) {
#takes hourly daily from portal and produces monthly total/avg
sumprecip = aggregate(dataframe$Precipitation,by=list(dataframe$Month,dataframe$Year),FUN=sum)
maxtemp = aggregate(dataframe$TempAirMax,by=list(dataframe$Month,dataframe$Year),FUN=max)
mintemp = aggregate(dataframe$TempAirMin,by=list(dataframe$Month,dataframe$Year),FUN=min)
month = sumprecip$Group.1
year = sumprecip$Group.2
sumprecip = sumprecip$x
maxtemp = maxtemp$x
mintemp = mintemp$x
return(data.frame(year,month,sumprecip,maxtemp,mintemp))
}
###############################################################################################
# Read in files and run functions
###############################################################################################
daily = read.csv('data/Daily_weather_1980_present_fixed_withgaps.csv')
# monthly summary
monthly = monthly_summary_from_daily(daily)
# write to csv file
write.csv(monthly,file="data/Monthly_ppt_1980_present.csv",row.names=F)
# Clear workspace
rm(list=ls())