-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdsp.c
524 lines (459 loc) · 14.8 KB
/
dsp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
// modified by Luigi Auriemma to work also with damaged audio and allow customized parameters
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <[email protected]>
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <[email protected]>
* \author Steve Underwood <[email protected]>
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <[email protected]>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
//#include <malloc.h>
#define DSP_DIGITMODE_DTMF 0 /*!< Detect DTMF digits */
#define DSP_DIGITMODE_MF 1 /*!< Detect MF digits */
#define DSP_DIGITMODE_NOQUELCH (1 << 8) /*!< Do not quelch DTMF from in-band */
#define DSP_DIGITMODE_RELAXDTMF (1 << 11) /*!< "Radio" mode (relaxed DTMF) */
#define MAX_DTMF_DIGITS 1024
/* Basic DTMF specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
/* PARAMETERS */
static double DTMF_OPTIMIZED_VALUE = 102;
//#define DTMF_THRESHOLD 8.0e7
static double DTMF_THRESHOLD = 800000000.0; // aluigi work-around
static double DTMF_NORMAL_TWIST = 6.3; /* 8dB */
#if 0
#ifdef RADIO_RELAX
static double DTMF_REVERSE_TWIST1 = 6.5;
static double DTMF_REVERSE_TWIST2 = 2.5;
#else
static double DTMF_REVERSE_TWIST1 = 4.0;
static double DTMF_REVERSE_TWIST2 = 2.5;
#endif
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? DTMF_REVERSE_TWIST1 : DTMF_REVERSE_TWIST2) /* 4dB normal */
static double DTMF_2ND_HARMONIC_ROW1 = 1.7;
static double DTMF_2ND_HARMONIC_ROW2 = 2.5;
#define DTMF_2ND_HARMONIC_ROW ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? DTMF_2ND_HARMONIC_ROW1 : DTMF_2ND_HARMONIC_ROW2) /* 4dB normal */
static double DTMF_2ND_HARMONIC_COL = 63.1; /* 18dB */
static double DTMF_TO_TOTAL_ENERGY = 42.0;
#endif
static double DTMF_RELATIVE_PEAK_ROW = 6.3; /* 8dB */
static double DTMF_RELATIVE_PEAK_COL = 6.3; /* 8dB */
//#define BELL_MF_THRESHOLD 1.6e9
static double BELL_MF_THRESHOLD = 800000000.0; // aluigi work-around
static double BELL_MF_TWIST = 4.0; /* 6dB */
static double BELL_MF_RELATIVE_PEAK = 12.6; /* 11dB */
static int SAMPLE_RATE = 8000;
typedef struct {
int v2;
int v3;
int chunky;
int fac;
int samples;
} goertzel_state_t;
typedef struct {
int value;
int power;
} goertzel_result_t;
typedef struct
{
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
int lasthit;
int current_hit;
double energy;
int current_sample;
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int current_hit;
int hits[5];
int current_sample;
} mf_detect_state_t;
typedef struct
{
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
} digit_detect_state_t;
static double dtmf_row[] =
{
697.0, 770.0, 852.0, 941.0
};
static double dtmf_col[] =
{
1209.0, 1336.0, 1477.0, 1633.0
};
static double mf_tones[] =
{
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
int v1;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = (s->fac * s->v2) >> 15;
s->v3 = s->v3 - v1 + (sample >> s->chunky);
if (abs(s->v3) > 32768) {
s->chunky++;
s->v3 = s->v3 >> 1;
s->v2 = s->v2 >> 1;
v1 = v1 >> 1;
}
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i=0;i<count;i++)
goertzel_sample(s, samps[i]);
}
static inline double goertzel_result(goertzel_state_t *s)
{
goertzel_result_t r;
r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
r.power = s->chunky * 2;
return (double)r.value * (double)(1 << r.power);
}
static inline void goertzel_init(goertzel_state_t *s, double freq, int samples)
{
s->v2 = s->v3 = s->chunky = 0.0;
s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / SAMPLE_RATE));
s->samples = samples;
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = s->chunky = 0.0;
}
static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
{
int i;
s->lasthit = 0;
s->current_hit = 0;
for (i = 0; i < 4; i++) {
goertzel_init (&s->row_out[i], dtmf_row[i], DTMF_OPTIMIZED_VALUE);
goertzel_init (&s->col_out[i], dtmf_col[i], DTMF_OPTIMIZED_VALUE);
s->energy = 0.0;
}
s->current_sample = 0;
}
static void ast_mf_detect_init (mf_detect_state_t *s)
{
int i;
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
for (i = 0; i < 6; i++) {
goertzel_init (&s->tone_out[i], mf_tones[i], 160);
}
s->current_sample = 0;
s->current_hit = 0;
}
static void ast_digit_detect_init(digit_detect_state_t *s, int mf)
{
s->current_digits = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
if (mf)
ast_mf_detect_init(&s->td.mf);
else
ast_dtmf_detect_init(&s->td.dtmf);
}
static void store_digit(digit_detect_state_t *s, char digit)
{
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = digit;
s->digits[s->current_digits] = '\0';
} else {
//ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
s->lost_digits++;
}
}
static int dtmf_detect(digit_detect_state_t *s, int16_t amp[], int samples,
int digitmode, int *writeback)
{
double row_energy[4];
double col_energy[4];
double famp;
int i;
int j;
int sample;
int best_row;
int best_col;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* DTMF_OPTIMIZED_VALUE is optimised to meet the DTMF specs. */
if ((samples - sample) >= (DTMF_OPTIMIZED_VALUE - s->td.dtmf.current_sample))
limit = sample + (DTMF_OPTIMIZED_VALUE - s->td.dtmf.current_sample);
else
limit = samples;
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
famp = amp[j];
s->td.dtmf.energy += famp*famp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
goertzel_sample(s->td.dtmf.row_out, amp[j]);
goertzel_sample(s->td.dtmf.col_out, amp[j]);
goertzel_sample(s->td.dtmf.row_out + 1, amp[j]);
goertzel_sample(s->td.dtmf.col_out + 1, amp[j]);
goertzel_sample(s->td.dtmf.row_out + 2, amp[j]);
goertzel_sample(s->td.dtmf.col_out + 2, amp[j]);
goertzel_sample(s->td.dtmf.row_out + 3, amp[j]);
goertzel_sample(s->td.dtmf.col_out + 3, amp[j]);
}
s->td.dtmf.current_sample += (limit - sample);
if (s->td.dtmf.current_sample < DTMF_OPTIMIZED_VALUE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result (&s->td.dtmf.row_out[0]);
col_energy[0] = goertzel_result (&s->td.dtmf.col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result (&s->td.dtmf.row_out[i]);
if (row_energy[i] > row_energy[best_row])
best_row = i;
col_energy[i] = goertzel_result (&s->td.dtmf.col_out[i]);
if (col_energy[i] > col_energy[best_col])
best_col = i;
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
// col_energy[best_col] < row_energy[best_row] *DTMF_REVERSE_TWIST && // aluigi work-around
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
if ((i != best_col &&
col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row
&& row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and fraction of total energy test */
if (i >= 4 /*&&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->td.dtmf.energy*/) { // aluigi work-around
/* Got a hit */
hit = dtmf_positions[(best_row << 2) + best_col];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
}
}
/* The logic in the next test is:
For digits we need two successive identical clean detects, with
something different preceeding it. This can work with
back to back differing digits. More importantly, it
can work with nasty phones that give a very wobbly start
to a digit */
if (hit != s->td.dtmf.current_hit) {
if (hit && s->td.dtmf.lasthit == hit) {
s->td.dtmf.current_hit = hit;
store_digit(s, hit);
} else if (s->td.dtmf.lasthit != s->td.dtmf.current_hit) {
s->td.dtmf.current_hit = 0;
}
}
s->td.dtmf.lasthit = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->td.dtmf.row_out[i]);
goertzel_reset(&s->td.dtmf.col_out[i]);
}
s->td.dtmf.energy = 0.0;
s->td.dtmf.current_sample = 0;
}
return (s->td.dtmf.current_hit); /* return the debounced hit */
}
/* MF goertzel size */
#define MF_GSIZE 120
static int mf_detect(digit_detect_state_t *s, int16_t amp[],
int samples, int digitmode, int *writeback)
{
double energy[6];
int best;
int second_best;
//double famp;
int i;
int j;
int sample;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample))
limit = sample + (MF_GSIZE - s->td.mf.current_sample);
else
limit = samples;
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
//famp = amp[j];
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
goertzel_sample(s->td.mf.tone_out, amp[j]);
goertzel_sample(s->td.mf.tone_out + 1, amp[j]);
goertzel_sample(s->td.mf.tone_out + 2, amp[j]);
goertzel_sample(s->td.mf.tone_out + 3, amp[j]);
goertzel_sample(s->td.mf.tone_out + 4, amp[j]);
goertzel_sample(s->td.mf.tone_out + 5, amp[j]);
}
s->td.mf.current_sample += (limit - sample);
if (s->td.mf.current_sample < MF_GSIZE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
for (i=2;i<6;i++) {
energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
// && energy[best] < energy[second_best]*BELL_MF_TWIST // aluigi work-around
&& energy[best]*BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
for (i=0;i<6;i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
best = best*5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
(hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] &&
hit != s->td.mf.hits[0]))) {
store_digit(s, hit);
}
}
if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
/* Two successive block without a hit terminate current digit */
s->td.mf.current_hit = 0;
}
s->td.mf.hits[0] = s->td.mf.hits[1];
s->td.mf.hits[1] = s->td.mf.hits[2];
s->td.mf.hits[2] = s->td.mf.hits[3];
s->td.mf.hits[3] = s->td.mf.hits[4];
s->td.mf.hits[4] = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++)
goertzel_reset(&s->td.mf.tone_out[i]);
s->td.mf.current_sample = 0;
}
return (s->td.mf.current_hit); /* return the debounced hit */
}