-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathWarpXAlgorithmSelection.H
159 lines (137 loc) · 4.76 KB
/
WarpXAlgorithmSelection.H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* Copyright 2019 David Grote, Luca Fedeli, Remi Lehe
* Yinjian Zhao
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#ifndef WARPX_UTILS_WARPXALGORITHMSELECTION_H_
#define WARPX_UTILS_WARPXALGORITHMSELECTION_H_
#include <AMReX_BaseFwd.H>
#include <AMReX_Enum.H>
#include <ablastr/utils/Enums.H>
#include <string>
using namespace ablastr::utils::enums; // NOLINT(google-global-names-in-headers)
/**
* \brief struct to determine the computational medium, i.e., vacuum or material/macroscopic
default is vacuum.
*/
AMREX_ENUM(MediumForEM,
Vacuum,
Macroscopic,
Default = Vacuum);
/**
* \brief struct to select the overall evolve scheme
*/
AMREX_ENUM(EvolveScheme,
Explicit,
ThetaImplicitEM,
SemiImplicitEM,
StrangImplicitSpectralEM,
Default = Explicit);
/**
* \brief struct to select algorithm for macroscopic Maxwell solver
LaxWendroff (semi-implicit) represents sigma*E = sigma*0.5*(E^(n) + E^(n+1))
Backward Euler (fully-implicit) represents sigma*E = sigma*E^(n+1)
default is Backward Euler as it is more robust.
*/
AMREX_ENUM(MacroscopicSolverAlgo,
BackwardEuler,
LaxWendroff,
Default = BackwardEuler);
AMREX_ENUM(ElectromagneticSolverAlgo,
None,
Yee,
CKC,
PSATD,
ECT,
HybridPIC,
hybrid = HybridPIC,
Default = Yee);
AMREX_ENUM(ElectrostaticSolverAlgo,
None,
Relativistic,
LabFrameElectroMagnetostatic,
LabFrame,
LabFrameEffectivePotential,
Default = None);
AMREX_ENUM(PoissonSolverAlgo,
Multigrid,
IntegratedGreenFunction,
fft = IntegratedGreenFunction,
Default = Multigrid);
AMREX_ENUM(ParticlePusherAlgo,
Boris,
Vay,
HigueraCary,
higuera = HigueraCary,
Default = Boris);
AMREX_ENUM(CurrentDepositionAlgo,
Esirkepov,
Direct,
Vay,
Villasenor,
Default = Esirkepov);
AMREX_ENUM(ChargeDepositionAlgo,
Standard,
Default = Standard);
AMREX_ENUM(GatheringAlgo,
EnergyConserving,
MomentumConserving,
Default = EnergyConserving);
AMREX_ENUM(PSATDSolutionType,
FirstOrder,
SecondOrder,
Default = SecondOrder);
AMREX_ENUM(JInTime,
Constant,
Linear,
Default = Constant);
AMREX_ENUM(RhoInTime,
Constant,
Linear,
Default = Linear);
/** Strategy to compute weights for use in load balance.
*/
AMREX_ENUM(LoadBalanceCostsUpdateAlgo,
Timers, //!< load balance according to in-code timer-based weights (i.e., with `costs`)
Heuristic, /**< load balance according to weights computed from number of cells
and number of particles per box (i.e., with `costs_heuristic`) */
Default = Timers);
/** Field boundary conditions at the domain boundary
*/
AMREX_ENUM(FieldBoundaryType,
PML,
Periodic,
PEC, //!< perfect electric conductor (PEC) with E_tangential=0
PMC, //!< perfect magnetic conductor (PMC) with B_tangential=0
Damped, // Fields in the guard cells are damped for PSATD
//in the moving window direction
Absorbing_SilverMueller, // Silver-Mueller boundary condition
absorbingsilvermueller = Absorbing_SilverMueller,
Neumann, // For electrostatic, the normal E is set to zero
None, // The fields values at the boundary are not updated. This is
// useful for RZ simulations, at r=0.
Open, // Used in the Integrated Green Function Poisson solver
// Note that the solver implicitely assumes open BCs:
// no need to enforce them separately
PECInsulator, // Mixed boundary with PEC and insulator
Default = PML);
/** Particle boundary conditions at the domain boundary
*/
AMREX_ENUM(ParticleBoundaryType,
Absorbing, //!< particles crossing domain boundary are removed
Open, //!< particles cross domain boundary leave with damped j
Reflecting, //!< particles are reflected
Periodic, //!< particles are introduced from the periodic boundary
Thermal,
None, //!< For r=0 boundary with RZ simulations
Default = Absorbing);
/** MPI reductions
*/
AMREX_ENUM(ReductionType,
Maximum,
Minimum,
Sum,
Integral = Sum);
#endif // WARPX_UTILS_WARPXALGORITHMSELECTION_H_