-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathbody_keypoint_track.py
300 lines (249 loc) · 14.3 KB
/
body_keypoint_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
import pickle
from typing import List, Tuple, Dict
import mediapipe as mp
import numpy as np
import cv2
from utils3d import intrinsic_from_fov, mls_smooth_numpy
MEDIAPIPE_POSE_KEYPOINTS = [
'nose', 'left_eye_inner', 'left_eye', 'left_eye_outer', 'right_eye_inner', 'right_eye', 'right_eye_outer', 'left_ear', 'right_ear', 'mouth_left', 'mouth_right',
'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_pinky', 'right_pinky', 'left_index', 'right_index', 'left_thumb', 'right_thumb',
'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle', 'left_heel', 'right_heel', 'left_foot_index', 'right_foot_index'
] # 33
MEDIAPIPE_HAND_KEYPOINTS = [
"wrist", "thumb1", "thumb2", "thumb3", "thumb4",
"index1", "index2", "index3", "index4",
"middle1", "middle2", "middle3", "middle4",
"ring1", "ring2", "ring3", "ring4",
"pinky1", "pinky2", "pinky3", "pinky4"
] # 21
ALL_KEYPOINTS = MEDIAPIPE_POSE_KEYPOINTS + ['left_' + s for s in MEDIAPIPE_HAND_KEYPOINTS] + ['right_' + s for s in MEDIAPIPE_HAND_KEYPOINTS]
MEDIAPIPE_POSE_CONNECTIONS = [(0, 1), (1, 2), (2, 3), (3, 7), (0, 4), (4, 5),
(5, 6), (6, 8), (9, 10), (11, 12), (11, 13),
(13, 15), (15, 17), (15, 19), (15, 21), (17, 19),
(12, 14), (14, 16), (16, 18), (16, 20), (16, 22),
(18, 20), (11, 23), (12, 24), (23, 24), (23, 25),
(24, 26), (25, 27), (26, 28), (27, 29), (28, 30),
(29, 31), (30, 32), (27, 31), (28, 32)]
WEIGHTS = {
'left_ear': 0.04,
'right_ear': 0.04,
'left_shoulder': 0.18,
'right_shoulder': 0.18,
'left_elbow': 0.02,
'right_elbow': 0.02,
'left_wrist': 0.01,
'right_wrist': 0.01,
'left_hip': 0.2,
'right_hip': 0.2,
'left_knee': 0.03,
'right_knee': 0.03,
'left_ankle': 0.02,
'right_ankle': 0.02,
}
class BodyKeypointTrack:
def __init__(self, im_width: int, im_height: int, fov: float, frame_rate: float, *, track_hands: bool = True, model_complexity=1, smooth_range: float = 0.3, smooth_range_barycenter: float = 1.0):
self.K = intrinsic_from_fov(fov, im_width, im_height)
self.im_width, self.im_height = im_width, im_height
self.frame_delta = 1. / frame_rate
self.mp_pose_model = mp.solutions.pose.Pose(
model_complexity=model_complexity,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
self.pose_rvec, self.pose_tvec = None, None
self.pose_kpts2d = self.pose_kpts3d = None
self.barycenter_weight = np.array([WEIGHTS.get(kp, 0.) for kp in MEDIAPIPE_POSE_KEYPOINTS])
self.track_hands = track_hands
if track_hands:
self.mp_hands_model = mp.solutions.hands.Hands(
max_num_hands=2,
model_complexity=min(model_complexity, 1),
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
self.left_hand_rvec, self.left_hand_tvec = None, None
self.left_hand_kpts2d = self.left_hand_kpts3d = None
self.right_hand_rvec, self.right_hand_tvec = None, None
self.right_hand_kpts2d = self.right_hand_kpts3d = None
self.smooth_range = smooth_range
self.smooth_range_barycenter = smooth_range_barycenter
self.barycenter_history: List[Tuple[np.ndarray, float]] = []
self.pose_history: List[Tuple[np.ndarray, float]] = []
self.left_hand_history: List[Tuple[np.ndarray, float]] = []
self.right_hand_history: List[Tuple[np.ndarray, float]] = []
def _get_camera_space_landmarks(self, image_landmarks, world_landmarks, visible, rvec, tvec):
# get transformation matrix from world coordinate to camera coordinate
_, rvec, tvec = cv2.solvePnP(world_landmarks[visible], image_landmarks[visible], self.K, np.zeros(5), rvec=rvec, tvec=tvec, useExtrinsicGuess=rvec is not None)
rmat, _ = cv2.Rodrigues(rvec)
# get camera coordinate of all keypoints
kpts3d_cam = world_landmarks @ rmat.T + tvec.T
# force projected x, y to be identical to visibile image_landmarks
kpts3d_cam_z = kpts3d_cam[:, 2].reshape(-1, 1)
kpts3d_cam[:, :2] = (np.concatenate([image_landmarks, np.ones((image_landmarks.shape[0], 1))], axis=1) @ np.linalg.inv(self.K).T * kpts3d_cam_z)[:, :2]
return kpts3d_cam, rvec, tvec
def _track_pose(self, image: np.ndarray, t: float):
self.pose_kpts2d = self.pose_kpts3d = self.barycenter = None
results = self.mp_pose_model.process(image)
if results.pose_landmarks is None:
return
image_landmarks = np.array([[lm.x * self.im_width, lm.y * self.im_height] for lm in results.pose_landmarks.landmark])
world_landmarks = np.array([[lm.x, lm.y, lm.z] for lm in results.pose_world_landmarks.landmark])
visible = np.array([lm.visibility > 0.2 for lm in results.pose_landmarks.landmark])
if visible.sum() < 6:
return
kpts3d, rvec, tvec = self._get_camera_space_landmarks(image_landmarks, world_landmarks, visible, self.pose_rvec, self.pose_tvec)
if tvec[2] < 0:
return
self.pose_kpts2d = image_landmarks
self.barycenter = np.average(kpts3d, axis=0, weights=self.barycenter_weight)
self.pose_kpts3d = kpts3d - self.barycenter
self.pose_rvec, self.pose_tvec = rvec, tvec
self.barycenter_history.append((self.barycenter, t))
self.pose_history.append((kpts3d, t))
def _track_hands(self, image: np.ndarray, t: float):
self.left_hand_kpts2d = self.left_hand_kpts3d = None
self.right_hand_kpts2d = self.right_hand_kpts3d = None
# run mediapipe hand estimation,
results = self.mp_hands_model.process(image)
# get left hand keypoints
if results.multi_handedness is None:
return
num_hands_detected = len(results.multi_handedness)
left_hand_id = list(filter(lambda i: results.multi_handedness[i].classification[0].label == 'Right', range(num_hands_detected)))
if len(left_hand_id) > 0:
left_hand_id = left_hand_id[0]
image_landmarks = np.array([[lm.x * self.im_width, lm.y * self.im_height] for lm in results.multi_hand_landmarks[left_hand_id].landmark])
world_landmarks = np.array([[lm.x, lm.y, lm.z] for lm in results.multi_hand_world_landmarks[left_hand_id].landmark])
visible = np.array([lm.visibility > 0.2 for lm in results.multi_hand_landmarks[left_hand_id].landmark])
if visible.sum() >= 6:
kpts3d, rvec, tvec = self._get_camera_space_landmarks(image_landmarks, world_landmarks, visible, self.left_hand_rvec, self.left_hand_tvec)
if tvec[2] > 0:
self.left_hand_kpts2d = image_landmarks
self.left_hand_kpts3d = kpts3d + (self.pose_kpts3d[MEDIAPIPE_POSE_KEYPOINTS.index('left_wrist')] - kpts3d[MEDIAPIPE_HAND_KEYPOINTS.index('wrist')]).reshape(1, 3)
self.left_hand_rvec, self.left_hand_tvec = rvec, tvec
self.left_hand_history.append((self.left_hand_kpts3d, t))
right_hand_id = list(filter(lambda i: results.multi_handedness[i].classification[0].label == 'Left', range(num_hands_detected)))
if len(right_hand_id) > 0:
right_hand_id = right_hand_id[0]
image_landmarks = np.array([[lm.x * self.im_width, lm.y * self.im_height] for lm in results.multi_hand_landmarks[right_hand_id].landmark])
world_landmarks = np.array([[lm.x, lm.y, lm.z] for lm in results.multi_hand_world_landmarks[right_hand_id].landmark])
visible = np.array([lm.visibility > 0.2 for lm in results.multi_hand_landmarks[right_hand_id].landmark])
if visible.sum() >= 6:
kpts3d, rvec, tvec = self._get_camera_space_landmarks(image_landmarks, world_landmarks, visible, self.right_hand_rvec, self.right_hand_tvec)
if tvec[2] > 0:
self.right_hand_kpts2d = image_landmarks
self.right_hand_kpts3d = kpts3d + (self.pose_kpts3d[MEDIAPIPE_POSE_KEYPOINTS.index('right_wrist')] - kpts3d[MEDIAPIPE_HAND_KEYPOINTS.index('wrist')]).reshape(1, 3)
self.right_hand_rvec, self.right_hand_tvec = rvec, tvec
self.right_hand_history.append((self.right_hand_kpts3d, t))
def track(self, image: np.ndarray, frame_t: float):
self._track_pose(image, frame_t)
if self.track_hands and self.pose_kpts3d is not None:
self._track_hands(image, frame_t)
def get_smoothed_3d_keypoints(self, query_t: float):
# Get smoothed barycenter
barycenter_list = [barycenter for barycenter, t in self.barycenter_history if abs(t - query_t) < self.smooth_range_barycenter]
barycenter_t = [t for barycenter, t in self.barycenter_history if abs(t - query_t) < self.smooth_range_barycenter]
if len(barycenter_t) == 0:
barycenter = np.zeros(3)
else:
barycenter = mls_smooth_numpy(barycenter_t, barycenter_list, query_t, self.smooth_range_barycenter)
# Get smoothed pose keypoints
pose_kpts3d_list = [kpts3d for kpts3d, t in self.pose_history if abs(t - query_t) < self.smooth_range]
pose_t = [t for kpts3d, t in self.pose_history if abs(t - query_t) < self.smooth_range]
pose_kpts3d = None if not any(abs(t - query_t) < self.frame_delta * 0.6 for t in pose_t) else mls_smooth_numpy(pose_t, pose_kpts3d_list, query_t, self.smooth_range)
all_kpts3d = pose_kpts3d if pose_kpts3d is not None else np.zeros((len(MEDIAPIPE_POSE_KEYPOINTS), 3))
all_valid = np.full(len(MEDIAPIPE_POSE_KEYPOINTS), pose_kpts3d is not None)
if self.track_hands:
# Get smoothed left hand keypoints
left_hand_kpts3d_list = [kpts3d for kpts3d, t in self.left_hand_history if abs(t - query_t) < self.smooth_range]
left_hand_t = [t for kpts3d, t in self.left_hand_history if abs(t - query_t) < self.smooth_range]
if any(abs(t - query_t) < self.frame_delta * 0.6 for t in left_hand_t):
left_hand_kpts3d = barycenter[None, :] + mls_smooth_numpy(left_hand_t, left_hand_kpts3d_list, query_t, self.smooth_range)
else:
left_hand_kpts3d = None
# Get smoothed right hand keypoints
right_hand_kpts3d_list = [kpts3d for kpts3d, t in self.right_hand_history if abs(t - query_t) < self.smooth_range]
right_hand_t = [t for kpts3d, t in self.right_hand_history if abs(t - query_t) < self.smooth_range]
if any(abs(t - query_t) < self.frame_delta * 0.6 for t in right_hand_t):
right_hand_kpts3d = barycenter[None, :] + mls_smooth_numpy(right_hand_t, right_hand_kpts3d_list, query_t, self.smooth_range)
else:
right_hand_kpts3d = None
all_kpts3d = np.concatenate([
all_kpts3d,
left_hand_kpts3d if left_hand_kpts3d is not None else np.zeros((len(MEDIAPIPE_HAND_KEYPOINTS), 3)),
right_hand_kpts3d if right_hand_kpts3d is not None else np.zeros((len(MEDIAPIPE_HAND_KEYPOINTS), 3))
], axis=0)
all_valid = np.concatenate([
all_valid,
np.full(len(MEDIAPIPE_HAND_KEYPOINTS), left_hand_kpts3d is not None),
np.full(len(MEDIAPIPE_HAND_KEYPOINTS), right_hand_kpts3d is not None)
], axis=0)
return all_kpts3d, all_valid
def get_2d_keypoints(self):
if self.track_hands:
return self.pose_kpts2d, self.left_hand_kpts2d, self.right_hand_kpts2d
else:
return self.pose_kpts2d
def show_annotation(image, kpts3d, valid, intrinsic):
annotate_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
kpts3d_homo = kpts3d @ intrinsic.T
kpts2d = kpts3d_homo[:, :2] / kpts3d_homo[:, 2:]
for a, b in MEDIAPIPE_POSE_CONNECTIONS:
if valid[a] == 0 or valid[b] == 0:
continue
cv2.line(annotate_image, (int(kpts2d[a, 0]), int(kpts2d[a, 1])), (int(kpts2d[b, 0]), int(kpts2d[b, 1])), (0, 255, 0), 1)
for i in range(kpts2d.shape[0]):
if valid[i] == 0:
continue
cv2.circle(annotate_image, (int(kpts2d[i, 0]), int(kpts2d[i, 1])), 2, (0, 0, 255), -1)
cv2.imshow('Keypoint annotation', annotate_image)
def test():
import tqdm
INPUT_FILE = 'C:\\Users\\16215\\Pictures\\视频项目\\orange.mp4'
INPUT_IMAGE_SIZE = (640, 360)
cap = cv2.VideoCapture(INPUT_FILE)
kpts3ds = []
body_keypoint_track = BodyKeypointTrack(
*INPUT_IMAGE_SIZE,
np.pi / 4,
track_hands=False,
smooth_range=0.3,
smooth_range_barycenter=1.0,
frame_delta=1.0 / 30.0
)
frame_t = 0.0
frame_i = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), INPUT_IMAGE_SIZE)
body_keypoint_track.track(frame, frame_t)
kpts3d, visib = body_keypoint_track.get_smoothed_3d_keypoints(frame_t)
kpts3ds.append((kpts3d, visib))
kpts3d_homo = kpts3d @ body_keypoint_track.K.T
kpts2d = kpts3d_homo[:, :2] / kpts3d_homo[:, 2:]
annotate_image = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
for a, b in MEDIAPIPE_POSE_CONNECTIONS:
if visib[a] == 0 or visib[b] == 0:
continue
cv2.line(annotate_image, (int(kpts2d[a, 0]), int(kpts2d[a, 1])), (int(kpts2d[b, 0]), int(kpts2d[b, 1])), (0, 255, 0), 1)
for i in range(kpts2d.shape[0]):
if visib[i] == 0:
continue
cv2.circle(annotate_image, (int(kpts2d[i, 0]), int(kpts2d[i, 1])), 2, (0, 0, 255), -1)
cv2.imshow('annot', annotate_image)
cv2.imwrite('tmp/tomas/%04d_annot.jpg' % frame_i, annotate_image)
# Press Q on keyboard to exit
if cv2.waitKey(25) & 0xFF == ord('q'):
break
frame_t += 1/30
frame_i += 1
cap.release()
cv2.destroyAllWindows()
with open('tmp/kpts3ds_mengnan.pkl', 'wb') as f:
pickle.dump(kpts3ds, f)
if __name__ == '__main__':
test()