forked from szechyjs/dsd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp25p1_heuristics.h
91 lines (78 loc) · 3.26 KB
/
p25p1_heuristics.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#ifndef P25P1_HEURISTICS_H_030dd3530b7546abbb56f8dd1e66a2f6
#define P25P1_HEURISTICS_H_030dd3530b7546abbb56f8dd1e66a2f6
#define HEURISTICS_SIZE 200
typedef struct
{
int values[HEURISTICS_SIZE];
float means[HEURISTICS_SIZE];
int index;
int count;
float sum;
float var_sum;
} SymbolHeuristics;
typedef struct
{
unsigned int bit_count;
unsigned int bit_error_count;
SymbolHeuristics symbols[4][4];
} P25Heuristics;
typedef struct
{
int value;
int dibit;
int corrected_dibit;
int sequence_broken;
} AnalogSignal;
#ifdef __cplusplus
extern "C"{
#endif
/**
* Initializes the heuristics state.
* \param heuristics The P25Heuristics structure to initialize.
*/
void initialize_p25_heuristics(P25Heuristics* heuristics);
/**
* Important method that estimates the most likely symbol for a given analog signal value and previous dibit.
* This is called by the digitizer.
* \param rf_mod Indicates the modulation used. The previous dibit is only used on C4FM.
* \param heuristics Pointer to the P25Heuristics module with all the needed state information.
* \param previous_dibit The previous dibit.
* \param analog_value The signal's analog value we want to interpret as a dibit.
* \param dibit Address were to store the estimated dibit.
* \return A boolean set to true if we are able to estimate a dibit. The reason why we might not be able
* to estimate it is because we don't have enough information to model the Gaussians (not enough data
* has been passed to contribute_to_heuristics).
*/
int estimate_symbol(int rf_mod, P25Heuristics* heuristics, int previous_dibit, int analog_value, int* dibit);
/**
* Log some useful information on the heuristics state.
*/
void debug_print_heuristics(P25Heuristics* heuristics);
/**
* This method contributes valuable information from dibits whose value we are confident is correct. We take
* the dibits and corresponding analog signal values to model the Gaussians for each dibit (and previous
* dibit if enabled).
* \param rf_mod Indicates the modulation used. The previous dibit is only used on C4FM.
* \param heuristics Pointer to the P25Heuristics module with all the needed state information.
* \param analog_signal_array Sequence of AnalogSignal which contain the cleared dibits and analog values.
* \param count number of cleared dibits passed (= number of elements to use from analog_signal_array).
*/
void contribute_to_heuristics(int rf_mod, P25Heuristics* heuristics, AnalogSignal* analog_signal_array, int count);
/**
* Updates the estimate for the BER (bit error rate). Mind this is method is not called for every single
* bit in the data stream but only for those bits over which we have an estimate of its error rate,
* specifically the bits that are protected by Reed-Solomon codes.
* \param heuristics The heuristics state.
* \param bits The number of bits we have read.
* \param errors The number of errors we estimate in those bits.
*/
void update_error_stats(P25Heuristics* heuristics, int bits, int errors);
/**
* Returns the estimate for the BER (bit error rate).
* \return The estimated BER. This is just the percentage of errors over the processed bits.
*/
float get_P25_BER_estimate(P25Heuristics* heuristics);
#ifdef __cplusplus
}
#endif
#endif // P25P1_HEURISTICS_H_030dd3530b7546abbb56f8dd1e66a2f6