-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnodes.py
104 lines (90 loc) · 3.73 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import comfy.model_management as mm
import folder_paths
import logging
import comfy
import torch
from .controlnet.controlnet_instantx import InstantXControlNetFlux
from .controlnet.controlnet_instantx_format2 import InstantXControlNetFluxFormat2
from comfy.controlnet import ControlNet, controlnet_load_state_dict
from nodes import ControlNetApplyAdvanced
def load_controlnet_flux_instantx(sd, controlnet_class, weight_dtype):
keys_to_keep = [
"controlnet_",
"single_transformer_blocks",
"transformer_blocks"
]
preserved_keys = {k: v.cpu() for k, v in sd.items() if any(k.startswith(key) for key in keys_to_keep)}
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
keys_to_discard = [
"double_blocks",
"single_blocks"
]
new_sd = {k: v for k, v in new_sd.items() if not any(k.startswith(discard_key) for discard_key in keys_to_discard)}
new_sd.update(preserved_keys)
config = {
"image_model": "flux",
"axes_dim": [16, 56, 56],
"in_channels": 16,
"depth": 5,
"depth_single_blocks": 10,
"context_in_dim": 4096,
"num_heads": 24,
"guidance_embed": True,
"hidden_size": 3072,
"mlp_ratio": 4.0,
"theta": 10000,
"qkv_bias": True,
"vec_in_dim": 768
}
device=mm.get_torch_device()
if weight_dtype == "fp8_e4m3fn":
dtype=torch.float8_e4m3fn
operations = comfy.ops.manual_cast
elif weight_dtype == "fp8_e5m2":
dtype=torch.float8_e5m2
operations = comfy.ops.manual_cast
else:
dtype=torch.bfloat16
operations = comfy.ops.disable_weight_init
control_model = controlnet_class(operations=operations, device=device, dtype=dtype, **config)
control_model = controlnet_load_state_dict(control_model, new_sd)
extra_conds = ['y', 'guidance', 'control_type']
latent_format = comfy.latent_formats.SD3()
# TODO check manual cast dtype
control = ControlNet(control_model, compression_ratio=1, load_device=device, manual_cast_dtype=torch.bfloat16, extra_conds=extra_conds, latent_format=latent_format)
return control
def load_controlnet(full_path, weight_dtype):
controlnet_data = comfy.utils.load_torch_file(full_path, safe_load=True)
if "controlnet_mode_embedder.fc.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, InstantXControlNetFlux, weight_dtype)
if "controlnet_mode_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, InstantXControlNetFluxFormat2, weight_dtype)
assert False, f"Only InstantX union controlnet supported. Could not find key 'controlnet_mode_embedder.fc.weight' in {full_path}"
INSTANTX_UNION_CONTROLNET_TYPES = {
"canny": 0,
"tile": 1,
"depth": 2,
"blur": 3,
"pose": 4,
"gray": 5,
"lq": 6
}
class InstantXFluxUnionControlNetLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"),),
"type": (list(INSTANTX_UNION_CONTROLNET_TYPES.keys()),),
#"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e5m2"],)
}
}
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, control_net_name, type, weight_dtype="default"):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, weight_dtype)
type_number = INSTANTX_UNION_CONTROLNET_TYPES.get(type, -1)
controlnet.set_extra_arg("control_type", type_number)
return (controlnet,)