-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrun.py
73 lines (62 loc) · 2.96 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
import numpy as np
import pandas as pd
import os
import time
from scipy import stats
from functions import sequences
from functions import get_face_areas
from functions.get_models import load_weights_EE, load_weights_LSTM
import warnings
warnings.filterwarnings('ignore', category = FutureWarning)
parser = argparse.ArgumentParser(description="run")
parser.add_argument('--path_video', type=str, default='video/', help='Path to all videos')
parser.add_argument('--path_save', type=str, default='report/', help='Path to save the report')
parser.add_argument('--conf_d', type=float, default=0.7, help='Elimination threshold for false face areas')
parser.add_argument('--path_FE_model', type=str, default='models/EmoAffectnet/weights_0_66_37_wo_gl.h5',
help='Path to a model for feature extraction')
parser.add_argument('--path_LSTM_model', type=str, default='models/LSTM/RAVDESS_with_config.h5',
help='Path to a model for emotion prediction')
args = parser.parse_args()
def pred_one_video(path):
start_time = time.time()
label_model = ['Neutral', 'Happiness', 'Sadness', 'Surprise', 'Fear', 'Disgust', 'Anger']
detect = get_face_areas.VideoCamera(path_video=path, conf=args.conf_d)
dict_face_areas, total_frame = detect.get_frame()
name_frames = list(dict_face_areas.keys())
face_areas = list(dict_face_areas.values())
EE_model = load_weights_EE(args.path_FE_model)
LSTM_model = load_weights_LSTM(args.path_LSTM_model)
features = EE_model(np.stack(face_areas))
seq_paths, seq_features = sequences.sequences(name_frames, features)
pred = LSTM_model(np.stack(seq_features)).numpy()
all_pred = []
all_path = []
for id, c_p in enumerate(seq_paths):
c_f = [str(i).zfill(6) for i in range(int(c_p[0]), int(c_p[-1])+1)]
c_pr = [pred[id]]*len(c_f)
all_pred.extend(c_pr)
all_path.extend(c_f)
m_f = [str(i).zfill(6) for i in range(int(all_path[-1])+1, total_frame+1)]
m_p = [all_pred[-1]]*len(m_f)
df=pd.DataFrame(data=all_pred+m_p, columns=label_model)
df['frame'] = all_path+m_f
df = df[['frame']+ label_model]
df = sequences.df_group(df, label_model)
if not os.path.exists(args.path_save):
os.makedirs(args.path_save)
filename = os.path.basename(path)[:-4] + '.csv'
df.to_csv(os.path.join(args.path_save,filename), index=False)
end_time = time.time() - start_time
mode = stats.mode(np.argmax(pred, axis=1))[0]
print('Report saved in: ', os.path.join(args.path_save,filename))
print('Predicted emotion: ', label_model[mode])
print('Lead time: {} s'.format(np.round(end_time, 2)))
print()
def pred_all_video():
path_all_videos = os.listdir(args.path_video)
for id, cr_path in enumerate(path_all_videos):
print('{}/{}'.format(id+1, len(path_all_videos)))
pred_one_video(os.path.join(args.path_video,cr_path))
if __name__ == "__main__":
pred_all_video()