-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathhuggingface.py
923 lines (803 loc) · 38.5 KB
/
huggingface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
import os
import torch
import transformers
from transformers.models.auto.modeling_auto import (
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
from peft import __version__ as PEFT_VERSION, PeftModel
import copy
from collections import defaultdict
from tqdm import tqdm
from pathlib import Path
import torch.nn.functional as F
from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria
from accelerate import Accelerator, find_executable_batch_size, DistributedType
from typing import List, Optional, Union
def _get_accelerate_args(
device_map_option: Optional[str] = "auto",
max_memory_per_gpu: Optional[Union[int, str]] = None,
max_cpu_memory: Optional[Union[int, str]] = None,
offload_folder: Optional[str] = "./offload",
) -> dict:
"""Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
max_memory = {}
if max_memory_per_gpu is not None:
max_memory_per_gpu_map = {
device_idx: max_memory_per_gpu
for device_idx in range(torch.cuda.device_count())
}
max_memory.update(max_memory_per_gpu_map)
if max_cpu_memory is not None:
max_memory["cpu"] = max_cpu_memory
args = {}
if max_memory:
args["max_memory"] = max_memory
args["device_map"] = device_map_option
args["offload_folder"] = offload_folder
return args
@register_model("hf-auto", "hf", "huggingface")
class HFLM(LM):
"""
An abstracted Huggingface model class. Enables usage with both models of
`transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.
Supports data-parallel multi-GPU with HF Accelerate.
"""
AUTO_MODEL_CLASS = None
_DEFAULT_MAX_LENGTH = 2048
def __init__(
self,
pretrained: Optional[str] = "gpt2",
revision: Optional[str] = "main",
subfolder: Optional[str] = None,
tokenizer: Optional[str] = None,
truncation: Optional[bool] = False,
max_length: Optional[int] = None,
device: Optional[str] = "cuda",
dtype: Optional[Union[str, torch.dtype]] = "auto",
batch_size: Optional[Union[int, str]] = 1,
max_batch_size: Optional[int] = 64,
low_cpu_mem_usage: Optional[bool] = True,
trust_remote_code: Optional[bool] = False,
use_fast_tokenizer: Optional[bool] = True,
cache_dir: Optional[Union[str, os.PathLike]] = None,
# arguments used for splitting a model across GPUs naively.
# only used if `parallelize=True`.
parallelize: Optional[bool] = False,
device_map_option: Optional[str] = "auto",
max_memory_per_gpu: Optional[Union[int, str]] = None,
max_cpu_memory: Optional[Union[int, str]] = None,
offload_folder: Optional[str] = "./offload",
# PEFT and quantization options
peft: Optional[str] = None,
load_in_8bit: Optional[bool] = False,
load_in_4bit: Optional[bool] = False,
bnb_4bit_quant_type: Optional[str] = None,
bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
gptq: Optional[Union[bool, str]] = False,
gptq_use_triton: Optional[bool] = False,
) -> None:
super().__init__()
assert isinstance(device, str)
assert isinstance(pretrained, str)
assert isinstance(batch_size, (int, str))
gpus = torch.cuda.device_count()
accelerator = Accelerator()
if not (parallelize or accelerator.num_processes > 1):
# use user-passed device
device_list = set(
["cuda", "cpu", "mps"]
+ [f"cuda:{i}" for i in range(torch.cuda.device_count())]
)
if device:
if device not in device_list:
device = int(device)
self._device = torch.device(device)
eval_logger.info(f"Using device '{device}'")
if device == "mps":
eval_logger.info(
"MPS is still in beta and only supports float32; setting dtype to float32."
)
else:
eval_logger.info("Device not specified")
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
self._device = (
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
)
else:
if device != "cuda":
eval_logger.info(
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
)
# TODO: include in warning that `load_in_8bit` etc. affect this too
self._device = device
model_kwargs = {}
if parallelize:
model_kwargs = _get_accelerate_args(
device_map_option,
max_memory_per_gpu,
max_cpu_memory,
offload_folder,
)
# TODO: update this to be less of a hack once subfolder is fixed in HF
revision = revision + ("/" + subfolder if subfolder is not None else "")
self._config = transformers.AutoConfig.from_pretrained(
pretrained,
revision=revision,
trust_remote_code=trust_remote_code,
)
if getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
elif (
not getattr(self._config, "model_type")
in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
):
if not trust_remote_code:
eval_logger.warning(
"HF model type is neither marked as CausalLM or Seq2SeqLM. \
This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
)
# if model type is neither in HF transformers causal or seq2seq model registries
# then we default to AutoModelForCausalLM
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
else:
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
assert self.AUTO_MODEL_CLASS in [
transformers.AutoModelForCausalLM,
transformers.AutoModelForSeq2SeqLM,
]
if not gptq:
if load_in_4bit:
assert (
transformers.__version__ >= "4.30.0"
), "load_in_4bit requires transformers >= 4.30.0"
if transformers.__version__ >= "4.30.0":
model_kwargs["load_in_4bit"] = load_in_4bit
if load_in_4bit:
if bnb_4bit_quant_type:
model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
if bnb_4bit_compute_dtype:
model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
bnb_4bit_compute_dtype
)
self._model = self.AUTO_MODEL_CLASS.from_pretrained(
pretrained,
revision=revision,
torch_dtype=utils.get_dtype(dtype),
low_cpu_mem_usage=low_cpu_mem_usage,
trust_remote_code=trust_remote_code,
load_in_8bit=load_in_8bit,
**model_kwargs,
)
else:
try:
from auto_gptq import AutoGPTQForCausalLM
except ModuleNotFoundError:
raise Exception(
"Tried to load auto_gptq, but auto-gptq is not installed ",
"please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
)
self._model = AutoGPTQForCausalLM.from_quantized(
pretrained,
model_basename=None if gptq is True else Path(gptq).stem,
low_cpu_mem_usage=low_cpu_mem_usage,
trust_remote_code=trust_remote_code,
use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
use_triton=gptq_use_triton,
warmup_triton=gptq_use_triton,
**model_kwargs,
)
if peft:
if load_in_4bit:
assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
self._model = PeftModel.from_pretrained(
self._model, peft, revision=revision
)
# forever after, access self._model through self.model property
self.model.eval()
self.model.tie_weights()
if gpus <= 1 and not parallelize:
# place model onto device, if not using HF Accelerate in any form
try:
self.model.to(self.device)
except ValueError:
eval_logger.info(
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
)
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
pretrained if tokenizer is None else tokenizer,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
)
self.truncation = truncation
self.vocab_size = self.tokenizer.vocab_size
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self._max_length = max_length
self.batch_schedule = 1
self.batch_sizes = {}
self.max_batch_size = max_batch_size
if str(batch_size).startswith("auto"):
batch_size = batch_size.split(":")
self.batch_size_per_gpu = batch_size[0]
self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
else:
self.batch_size_per_gpu = int(batch_size)
# multigpu data-parallel support when launched with accelerate
if gpus > 1:
if parallelize:
if accelerator.num_processes > 1:
raise RuntimeError(
"Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
)
else:
pass
elif gpus > accelerator.num_processes:
# TODO: make sure there's still never an edge case where we unintentionally default to CPU
eval_logger.warning(
"WARNING: The number of total system GPUs does not match the number of spawned processes. "
"If you would like to use data parallelism, please launch the script "
"with 'accelerate launch *script*'. "
f"Current run will proceed with {accelerator.num_processes} devices."
)
self._rank = accelerator.local_process_index
self._world_size = accelerator.num_processes
# manually set model to use gpu, for case where many GPUs available but
# only seek to use one
self._device = (
torch.device(f"cuda:{accelerator.local_process_index}")
if torch.cuda.is_available()
else torch.device("cpu")
)
try:
self.model.to(self.device)
except ValueError:
eval_logger.info(
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
)
else:
assert accelerator.distributed_type in [
DistributedType.FSDP,
DistributedType.MULTI_GPU,
], "Unsupported distributed type provided. Only DDP and FSDP are supported."
if accelerator.distributed_type == DistributedType.FSDP:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(
self.model, evaluation_mode=True
)
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {gpus} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config
@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def max_length(self):
if self._max_length: # if max length manually set, return it
return self._max_length
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
for attr in seqlen_config_attrs:
if hasattr(self.model.config, attr):
return getattr(self.model.config, attr)
if hasattr(self.tokenizer, "model_max_length"):
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
return self._DEFAULT_MAX_LENGTH
return self.tokenizer.model_max_length
return self._DEFAULT_MAX_LENGTH
@property
def max_gen_toks(self) -> int:
return 256
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def _detect_batch_size(self, requests=None, pos: int = 0):
if requests:
_, context_enc, continuation_enc = requests[pos]
max_length = len(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
)
max_context_enc = len(context_enc[-(self.max_length + 1) :])
max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
else:
max_length = self.max_length
# if OOM, then halves batch_size and tries again
@find_executable_batch_size(starting_batch_size=self.max_batch_size)
def forward_batch(batch_size):
if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
length = max(max_context_enc, max_cont_enc)
batched_conts = torch.ones(
(batch_size, length), device=self.device
).long()
test_batch = torch.ones((batch_size, length), device=self.device).long()
call_kwargs = {
"attn_mask": test_batch,
"labels": batched_conts,
}
else:
call_kwargs = {}
test_batch = torch.ones(
(batch_size, max_length), device=self.device
).long()
for _ in range(5):
out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
out = out # Identity process so that it passes pre-commit
return batch_size
batch_size = forward_batch()
if self.world_size > 1:
# if multi-GPU, always take minimum over all selected batch sizes
max_rnk_bs = torch.tensor([batch_size], device=self.device)
gathered = (
self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
)
batch_size = min(gathered)
utils.clear_torch_cache()
return batch_size
utils.clear_torch_cache()
return batch_size
def tok_encode(self, string: str, left_truncate_len=None):
""" """
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
add_special_tokens = False
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
add_special_tokens = True
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding
def tok_batch_encode(
self,
strings: List[str],
padding_side: str = "left",
left_truncate_len: int = None,
truncation: bool = False,
):
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
add_special_tokens = False
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
add_special_tokens = True
encoding = self.tokenizer(
strings,
truncation=truncation,
padding="longest",
return_tensors="pt",
add_special_tokens=add_special_tokens,
)
if left_truncate_len:
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
encoding["attention_mask"] = encoding["attention_mask"][
:, -left_truncate_len:
]
self.tokenizer.padding_side = old_padding_side
return encoding["input_ids"], encoding["attention_mask"]
def tok_decode(self, tokens):
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
return self.tokenizer.decode(tokens)
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
return self.tokenizer.decode(tokens, skip_special_tokens=True)
def _model_call(self, inps, attn_mask=None, labels=None):
"""
:param inps: torch.Tensor
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
[batch, sequence_ctx]. the size of sequence may vary from call to call
:param attn_mask: torch.Tensor, optional
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
:param labels: torch.Tensor, optional
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
:return
A torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model's decoder
"""
with torch.no_grad():
if attn_mask is not None or labels is not None:
assert attn_mask is not None and labels is not None
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
return self.model(
input_ids=inps, attention_mask=attn_mask, labels=labels
).logits
else:
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
return self.model(inps).logits
def _model_generate(self, context, max_length, stop, **generation_kwargs):
# we require users to pass do_sample=True explicitly
# for non-greedy gen. This should be reevaluated when considering beam search.
if "do_sample" not in generation_kwargs.keys():
generation_kwargs["do_sample"] = False
# build stopping criteria
stopping_criteria = stop_sequences_criteria(
self.tokenizer, stop, 1, context.shape[0]
)
return self.model.generate(
context,
max_length=max_length,
stopping_criteria=stopping_criteria,
pad_token_id=self.eot_token_id,
use_cache=True,
**generation_kwargs,
)
def _select_cont_toks(self, logits, contlen=None, inplen=None):
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
assert (
contlen and inplen
), "Must pass input len and cont. len to select scored logits for causal LM"
# discard right-padding.
# also discard the input/context tokens. we'll only score continuations.
logits = logits[inplen - contlen : inplen]
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
assert (
contlen and not inplen
), "Selecting scored logits for Seq2SeqLM requires only cont. len"
# only discard right-padding.
# the logits input to this fn only contain decoder-side tokens.
logits = logits[:contlen]
return logits
def _encode_pair(self, context, continuation):
n_spaces = len(context) - len(context.rstrip())
if n_spaces > 0:
continuation = context[-n_spaces:] + continuation
context = context[:-n_spaces]
whole_enc = self.tok_encode(context + continuation)
context_enc = self.tok_encode(context)
context_enc_len = len(context_enc)
continuation_enc = whole_enc[context_enc_len:]
return context_enc, continuation_enc
def loglikelihood(self, requests):
new_reqs = []
for context, continuation in [req.args for req in requests]:
if context == "":
# end of text as context
context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
continuation
)
else:
context_enc, continuation_enc = self._encode_pair(context, continuation)
new_reqs.append(((context, continuation), context_enc, continuation_enc))
return self._loglikelihood_tokens(new_reqs)
def loglikelihood_rolling(self, requests):
loglikelihoods = []
adaptive_batch_size = None
if self.batch_size == "auto":
# using rolling window with maximum context
print("Passed argument batch_size = auto. Detecting largest batch size")
batch_size = self._detect_batch_size()
print(f"Determined Largest batch size: {batch_size}")
adaptive_batch_size = batch_size
for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
rolling_token_windows = list(
map(
utils.make_disjoint_window,
utils.get_rolling_token_windows(
token_list=self.tok_encode(string),
prefix_token=self.eot_token_id,
max_seq_len=self.max_length,
context_len=1,
),
)
)
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
pad_amnt = 0
if self.world_size > 1:
# We pad out the external document-level iterator so the inner iterator doesn't hang
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
gathered = (
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
)
pad_amnt = max(gathered) - gathered[self.rank]
if pad_amnt > 0:
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
string_nll = self._loglikelihood_tokens(
rolling_token_windows,
disable_tqdm=True,
override_bs=adaptive_batch_size,
)
if (self.world_size > 1) and (pad_amnt > 0):
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
else:
# discard is_greedy
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
def _loglikelihood_tokens(
self, requests, disable_tqdm: bool = False, override_bs=None
):
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = x[1] + x[2]
return -len(toks), tuple(toks)
re_ord = utils.Reorderer(requests, _collate)
n_reordered_requests = len(re_ord.get_reordered())
# automatic (variable) batch size detection for vectorization
# pull longest context sample from request
def _batch_scheduler(pos):
sched = pos // int(n_reordered_requests / self.batch_schedule)
if sched in self.batch_sizes:
return self.batch_sizes[sched]
if (len(self.batch_sizes) > 1) and (
self.batch_sizes[sched - 1] == self.max_batch_size
):
# if previous batch size is already maximal, skip recomputation
self.batch_sizes[sched] = self.max_batch_size
return self.batch_sizes[sched]
print(
f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
)
self.batch_sizes[sched] = self._detect_batch_size(
re_ord.get_reordered(), pos
)
print(f"Determined largest batch size: {self.batch_sizes[sched]}")
return self.batch_sizes[sched]
for chunk in utils.chunks(
tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
n=self.batch_size
if self.batch_size != "auto"
else override_bs
if override_bs is not None
else 0,
fn=_batch_scheduler
if self.batch_size == "auto"
and n_reordered_requests > 0
and not override_bs
else None,
):
inps = []
cont_toks_list = []
inplens = []
conts = []
encoder_attns = []
padding_len_inp = None
padding_len_cont = None
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
# again because vectorizing is annoying
for _, context_enc, continuation_enc in chunk:
# sanity check
assert len(context_enc) > 0
assert len(continuation_enc) > 0
assert len(continuation_enc) <= self.max_length
# how this all works (illustrated on a causal decoder-only setup):
# CTX CONT
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
# model \ \
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
# when too long to fit in context, truncate from the left
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
inp = torch.tensor(
(context_enc)[-self.max_length :],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
# build encoder attn masks
encoder_attns.append(torch.ones_like(inp))
cont = torch.tensor(
(continuation_enc)[-self.max_length :],
# TODO: left-shift these?
# TODO: our code assumes we never end up truncating conts for either model type
dtype=torch.long,
device=self.device,
)
(contlen,) = cont.shape
conts.append(cont)
padding_len_cont = (
max(padding_len_cont, contlen)
if padding_len_cont is not None
else contlen
)
padding_len_inp = (
max(padding_len_inp, inplen)
if padding_len_inp is not None
else inplen
)
inps.append(inp) # [1, inp_length]
cont_toks_list.append(continuation_enc)
inplens.append(inplen)
# create encoder attn mask and batched conts, if seq2seq
call_kwargs = {}
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
batched_inps = utils.pad_and_concat(
padding_len_inp, inps, padding_side="right"
) # [batch, padding_len_inp]
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
# TODO: left-pad encoder inps and mask?
batched_inps = utils.pad_and_concat(
padding_len_inp, inps
) # [batch, padding_len_inp]
batched_conts = utils.pad_and_concat(
padding_len_cont, conts
) # [batch, padding_len_cont]
batched_encoder_mask = utils.pad_and_concat(
padding_len_inp, encoder_attns
) # [batch, padding_len_inp]
call_kwargs = {
"attn_mask": batched_encoder_mask,
"labels": batched_conts,
}
multi_logits = F.log_softmax(
self._model_call(batched_inps, **call_kwargs), dim=-1
) # [batch, padding_length (inp or cont), vocab]
for (cache_key, _, _), logits, inplen, cont_toks in zip(
chunk, multi_logits, inplens, cont_toks_list
):
# Slice to original seq length
contlen = len(cont_toks)
# take only logits in the continuation
# (discard context toks if decoder-only ; discard right-padding)
# also discards + checks for "virtual tokens" in the causal LM's input window
# from prompt/prefix tuning tokens, if applicable
ctx_len = (
inplen + (logits.shape[0] - padding_len_inp)
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
else None
)
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
logits = logits.unsqueeze(0) # [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens = logits.argmax(dim=-1)
cont_toks = torch.tensor(
cont_toks, dtype=torch.long, device=self.device
).unsqueeze(
0
) # [1, seq]
max_equal = (greedy_tokens == cont_toks).all()
# Obtain log-probs at the corresponding continuation token indices
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
-1
) # [1, seq]
# Answer: (log prob, is-exact-match)
answer = (float(logits.sum()), bool(max_equal))
res.append(answer)
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
return re_ord.get_original(res)
def greedy_until(self, requests):
res = defaultdict(list)
re_ords = {}
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(x[0])
return -len(toks), x[0]
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
for key, reqs in grouper.get_grouped().items():
# within each set of reqs for given kwargs, we reorder by token length, descending.
re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
pbar = tqdm(total=len(requests), disable=(self.rank != 0))
# for each different set of kwargs, we execute all requests, by batch.
for key, re_ord in re_ords.items():
for chunk in utils.chunks(
re_ord.get_reordered(),
self.batch_size,
):
contexts, all_gen_kwargs = zip(*chunk)
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
# unpack our keyword arguments.
until = None
if isinstance(gen_kwargs, dict):
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
if "until" in kwargs.keys():
until = kwargs.pop("until")
if isinstance(until, str):
until = [kwargs]
elif not isinstance(until, list):
raise ValueError(
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
)
else:
raise ValueError(
f"Expected `kwargs` to be of type `dict` but got {kwargs}"
)
if not until:
until = [self.tok_decode(self.eot_token_id)]
if "max_gen_toks" in kwargs.keys():
max_gen_toks = kwargs.pop("max_gen_toks")
else:
max_gen_toks = self.max_gen_toks
# first stop sequence is used to halt generation upon encountering
primary_until = [until[0]]
# set the max length in tokens of inputs ("context_enc")
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
# max len for inputs = max length, minus room to generate the max new tokens
max_ctx_len = self.max_length - max_gen_toks
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
# max len for inputs = encoder's whole max_length
max_ctx_len = self.max_length
# encode, pad, and truncate contexts for this batch
context_enc, attn_masks = self.tok_batch_encode(
contexts,
left_truncate_len=max_ctx_len,
truncation=self.truncation,
)
context_enc = context_enc.to(self.device)
attn_masks = attn_masks.to(self.device)
if "max_length" not in kwargs:
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
# perform batched generation
cont = self._model_generate(
context=context_enc,
attention_mask=attn_masks,
stop=primary_until,
**kwargs,
)
cont_toks_list = cont.tolist()
for cont_toks, context in zip(cont_toks_list, contexts):
# discard context + left-padding toks if using causal decoder-only LM
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
cont_toks = cont_toks[context_enc.shape[1] :]
s = self.tok_decode(cont_toks)
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
for term in until:
if len(term) > 0:
# ignore '' separator,
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
s = s.split(term)[0]
res[key].append(s)
self.cache_hook.add_partial(
"greedy_until", (context, gen_kwargs), s
)
pbar.update(1)
# reorder this group of results back to original unsorted form
res[key] = re_ord.get_original(res[key])
pbar.close()
return grouper.get_original(res)